[1] |
PIOVOSO M J, HOO K. Multivariate statistics for process control [J]. IEEE Control Syst. Mag., 2000, 22: 8-9.
|
[2] |
葛志强. 复杂工况过程统计监控方法研究 [D]. 杭州:浙江大学,2009.GE Z Q. Statistical process monitoring methods for complex processes [D]. Hangzhou: Zhejiang University, 2009.
|
[3] |
KRAMER M A. Nonlinear principal component analysis using auto associative neural networks [J]. AIChE Journal, 1991, 37 (2): 233-243.
|
[4] |
ZHANG Y W. Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM) [J]. Industrial and Engineering Chemistry Research, 2008, 47 (18): 6961-6971.
|
[5] |
CAI L F, TIAN X M. A new fault detection method for non-Gaussian process based on robust independent component analysis [J]. Process Safety and Environmental Protection, 2014, 92: 645-658.
|
[6] |
GE Z Q, SONG Z H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors [J]. Industrial and Engineering Chemistry Research, 2007, 46: 2054-2063.
|
[7] |
DISSMANN J, BRECHMANN E, CZADO C, et al. Selecting and estimating regular vine copula and application to financial returns [J]. Computational Statistics and Data Analysis, 2013, 59: 52-69.
|
[8] |
SCHOLZEL C, FRIEDERICHS P. Multivariate non-normally distributed random variables in climate research-introduction to the copula approach [J]. Nonlin Processes Geophys, 2008, 15 (5): 761-772.
|
[9] |
AHOOYI T M, SOROUSH M, ARBOGAST J E, et al. Maximum-likelihood maximum-entropy constrained probability density function estimation for prediction of rare events [J]. AIChE Journal, 2014, 60: 1013-1026.
|
[10] |
JOE H. Families of m-variate distributions with given margins and m(m 1)/2 bivariate dependence parameters [J]. Distributions with Fixed Marginals and Related Topics, 1996, 28: 120-141.
|
[11] |
ETIENNE C, MNOIQUE N F. Clayton copula and mixture decomposition [J]. Applied Stochastic Models and Data Analysis, 2005, 5: 699-708.
|
[12] |
WEIß GREGOR N F, MARCUS S. Mixture pair-copula- constructions [J]. Journal of Banking & Finance, 2015, 54: 175-191.
|
[13] |
ANANDARUP R, SWAPAN K P. Pair-copula based mixture models and their application in clustering [J]. Pattern Recognition, 2014, 47: 1689-1697.
|
[14] |
NGUYEN C, BHATTI M I, MAGDA K. Gold price and stock markets nexus under mixed-copulas [J]. Economic Modeling, 2016, 58: 283-292.
|
[15] |
NIKOLOULOPOULOS A K, KARLIS D. Finite normal mixture copulas for multivariate discrete data modeling [J]. Journal of Statistical Planning and Inference, 2009, 139: 3878-3890.
|
[16] |
REN X, TIAN Y, LI S J. Vine copula-based dependence description for multivariate multimode process monitoring [J]. Ind. Eng. Chem. Res, 2015, 54 (41): 10001-10019.
|
[17] |
SKLAR A. Fonctions de répartition à n dimensions et leurs marges [J]. Publ. Inst. Statist. Univ. Paris, 1959, 8: 229-231.
|
[18] |
REN X, LI S J, LÜ C, et al. Sequential dependence modeling using Bayesian theory and D-vine copula and its application on chemical process risk prediction [J]. Ind. Eng. Chem. Res., 2014, 53 (38): 14788-14801.
|
[19] |
BEDFORD T, COOKE R M. Vines-a new graphical model for dependent random variables [J]. Ann. Stat., 2002, 30: 1031-1068.
|
[20] |
CHRISTIAN G, ANNE C F. Everything you always wanted to know about copula modeling but were afraid to ask [J]. Journal of Hydrologic Engineering, 2007, 12 (4): 347-368.
|
[21] |
AAS K, CZADO C, FEIGESSI A. Pair-copula construction of multiple dependence [J]. Insurance Math Economic, 2009, 44 (2): 182-198.
|
[22] |
OAKES D. A model for association in bivariate survival data [J]. Journal of the Royal Statistical Society, Series B, 1982, 44 (3): 414-422.
|
[23] |
ANANDARUP R, SWAPAN K P. Pair-copula based mixture models and their application in clustering [J]. Pattern Recognition, 2014, 47: 1689-1697.
|
[24] |
JEFF WU C F. On the convergence properties of the EM algorithm [J]. The Annals of Statistics, 1983, 11 (1): 95-103.
|
[25] |
CHUNG Y J, LINDSAY B G. Convergence of the EM algorithm for continuous mixing distributions [J]. Statistics & Probability Letters, 2015, 12: 190-195.
|
[26] |
AKAIKE H. Information Theory and an Extension of the Maximum Likelihood Principle [M]. Budapest: Akadémiai Kiadó, 1973: 267-281.
|
[27] |
HYNDMAN R J. Computing and graphing highest density regions [J]. Ann. Stat., 1996, 50 (2): 120-126.
|
[28] |
YU J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [J]. AIChE Journal, 2008, 54 (7): 1811-1829.
|
[29] |
LEE J M, YOO C K, SANG W C. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science, 2004, 59 (1): 223-234.
|
[30] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem [J]. Comput. Chem. Eng., 1993, 17: 245-255.
|
[31] |
JIANG Q C, YAN X F, TONG C D. Double-weighted independent component analysis for non-Gaussian chemical process monitoring [J]. Ind. Eng. Chem. Res., 2013, 52: 14396-14405.
|