[1] |
Qin S J.Statistical process monitoring:basics and beyond[J].J. Chemom.,2003, 17(8/9):480-502
|
[2] |
Ge Z Q, Song Z H.Multimode process monitoring based on Bayesian method[J].J. Chemom.,2009, 23(12):636-650
|
[3] |
Yu J, Qin S J.Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J].AIChE J.,2008, 54(7):1811-1829
|
[4] |
Wold S, Esbensen K, Geladi P.Principal component analysis[J].Chemom. Intell. Lab. Syst.,1987, 2(1/2/3):37-52
|
[5] |
Nomikos P, Macgregor J F.Multi-way partial least squares in monitoring batch processes[J].Chemom. Intell. Lab. Syst.,1995, 30(1):97-108
|
[6] |
Zhao S J, Zhang J, Xu Y M.Performance monitoring of processes with multiple operating modes through multiple PLS models[J].J. Process Control,2006, 16(7):763-772
|
[7] |
Zhao S J, Zhang J, Xu Y M.Monitoring of processes with multiple operation modes through multiple principle component analysis models[J].Ind. Eng. Chem. Res.,2004, 43(22):7025-7035
|
[8] |
Xie X, Shi H B.Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models[J].Ind. Eng. Chem. Res.,2012, 51(15):5497-5505
|
[9] |
Yu J.A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis[J].J. Process Control,2012, 22(4):778-788
|
[10] |
Yu J.A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J].Chem. Eng. Sci.,2011, 68(1):506-519
|
[11] |
Tan S, Wang F L, Peng J, et al.Multimode process monitoring based on mode identification[J].Ind. Eng. Chem. Res.,2012, 51(1):374-388
|
[12] |
Wang F L, Tan S, Penga J, et al.Process monitoring based on mode identification for multi-mode process with transitions[J].Chemom. Intell. Lab. Syst.,2012, 110(1):144-155
|
[13] |
Rashid M M, Yu J.Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection[J].Ind. Eng. Chem. Res.,2012, 51(15):5506-5514
|
[14] |
Yu J B.Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring[J].J. Process Control,2010, 20(3):344-359
|
[15] |
Natarajan S, Srinivasan R.Multi-model based process condition monitoring of offshore oil and gas production process[J].Chem. Eng. Res. Des.,2010, 88(5/6):572-591
|
[16] |
Ge Z Q, Gao F R, Song Z H.Two-dimensional Bayesian monitoring method for nonlinear multimode processes[J].Chem. Eng. Sci.,2011, 66(21):5173-5183
|
[17] |
Breunig M M, Kriegel H, Ng R T, et al.LOF:identifying density-based local outliers//Proceeding of ACM SIGMOD International Conference on Management of Data.New York,2000
|
[18] |
Chen S Y, Wang W, van Zuylen H.A comparison of outlier detection algorithms for ITS data[J].Expert Syst. Appl.,2010, 37(2):1169-1178
|
[19] |
Duan L, Xu L, Guo F, et al.A local-density based spatial clustering algorithm with noise[J].Inform. Syst.,2007, 32(7):978-986
|
[20] |
Ganeriwal S, Balzano L K, Srivastava M B.Reputation-based framework for high integrity sensor networks[J].ACM Trans. Sensor Networks,2008, 4(3):1-37
|
[21] |
Gao J, Hu W, Zhang Z, et al.RKOF:Robust Kernel-based Local Outlier Detection//Advances in Knowledge Discovery and Data Mining[M]. Heidelberg:Springer, 2011:270-283
|
[22] |
Ma H H, Hu Y, Shi H B.A novel local neighborhood standardization strategy and its application in fault detection of multimode processes[J].Chemom. Intell. Lab. Syst.,2012, 118:287-300
|
[23] |
Silverman B W.Density Estimation for Statistics and Data Analysis[M].New York:Chapman and Hall, 1986
|
[24] |
Chiang L H, Russell E, Braatz R D.Fault Detection and Diagnosis in Industrial Systems[M].London:Springer, 2001
|
[25] |
Ricker N L.Optimal steady-state operation of the Tennessee Eastman challenge process[J].Comput. Chem. Eng.,1995, 19(9):949-959
|
[26] |
Downs J J, Vogel E F.A plant-wide industrial process control problem[J].Comput. Chem. Eng.,1993, 17(3):245-255
|