[1] |
CHIANG L H, RUSSELL E L, AATZ R D. Fault Detection and Diagnosis in Industrial Systems[M]. London:Springer-Verlag, 2001:35-98.
|
[2] |
宋冰, 马玉鑫, 方永锋,等. 基于LSNPE算法的化工过程故障检测[J]. 化工学报, 2014, 65(2):620-627.SONG B, MA Y X, FANG Y F, et al. Fault detection for chemical process based on LSNPE method[J]. CIESC Journal, 2014, 65(2):620-627.
|
[3] |
周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述[J]. 自动化学报, 2013, 39(11):1933-1943.ZHOU D H, LIU Y, HE X, et al. Review on fault diagnosis techniques for closed-loop systems[J]. Acta Automatica Sinica, 2013, 39(11):1933-1943.
|
[4] |
周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述[J]. 自动化学报, 2014, 40(2):161-171.ZHOU D H, SHI J T, HE X, et al. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Automatica Sinica, 2014, 40(2):161-171.
|
[5] |
李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1):1-9.LI H, XIAO D Y. Survey on data driven fault diagnosis methods[J]. Control & Decision, 2011, 26(1):1-9,16.
|
[6] |
齐咏生, 张海利, 高学金,等. 基于KECA的化工过程故障监测新方法[J]. 化工学报, 2016, 67(3):1063-1069.QI Y S, ZHANG H L,GAO X J, et al. Novel fault monitoring strategy for chemical process based on KECA[J]. CIESC Journal, 2016, 67(3):1063-1069.
|
[7] |
YIN S, DING S X, XIE X, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6418-6428.
|
[8] |
DING S X. Data-driven design of monitoring and diagnosis systems for dynamic processes:a review of subspace technique based schemes and some recent results[J]. Journal of Process Control, 2013, 24(2):431-449.
|
[9] |
GARCIA-ALVAREZ D, FUENTE M J, SAINZ G I. Fault detection and isolation in transient states using principal component analysis[J]. Journal of Process Control, 2012, 22(3):551-563.
|
[10] |
STUBBS S, ZHANG J, MORRIS J. Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach[J]. Computers & Chemical Engineering, 2012, 26(1):339-344.
|
[11] |
ZHANG N, TIAN X M, CAI L, et al. Process fault detection based on dynamic kernel slow feature analysis[J]. Computers & Electrical Engineering, 2015, 41:9-17.
|
[12] |
VENKATASUAMANIAN V, RENGASWAMY R, KAVURI S N, et al. A review of process fault detection and diagnosis(Ⅲ):Process bistory based methods[J]. Computers & Chemical Engineering, 2003, 27(3):327-346.
|
[13] |
CHINE W, MELLIT A, LUGHI V, et al. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[J]. Renewable Energy, 2016, 90:501-512.
|
[14] |
SHAO M, ZHU X J, CAO H F, et al. An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system[J]. Energy, 2014, 67(4):268-275.
|
[15] |
YIN Z, HOU J. Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes[J]. Neurocomputing, 2016, 174(PB):643-650.
|
[16] |
WANG A, SHA M, LIU L, et al. A new process industry fault diagnosis algorithm based on ensemble improved binary-tree SVM[J]. Chinese Journal of Electronics, 2015, 24(CJE-2):258-262.
|
[17] |
SHIN H J, EOM D H, KIM S S. One-class support vector machines-an application in machine fault detection and classification[J]. Computers & Industrial Engineering, 2005, 48(2):395-408.
|
[18] |
MAHADEVAN S, SHAH S L. Fault detection and diagnosis in process data using one-class support vector machines[J]. Journal of Process Control, 2009, 19(10):1627-1639.
|
[19] |
邓晓刚, 田学民. 基于DMVU-OCSVM的故障诊断方法[J]. 化工学报, 2011, 62(8):2146-2151.DENG X G, TIAN X M. Fault diagnosis method based on dynamic maximum variance unfolding and one-class support vector machine[J]. CIESC Journal, 2011, 62(8):2146-2151.
|
[20] |
EIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
|
[21] |
BIAU G Ã Š. Analysis of a random forests model[J]. Journal of Machine Learning Research, 2012, 13:1063-1095.
|
[22] |
RODRIGUEZ J J, KUNCHEVA L I, ALONSO C J. Rotation forest:a new classifier ensemble method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10):1619-1630.
|
[23] |
ZHANG L, SUGANTHAN P N. Random forests with ensemble of feature spaces[J]. Pattern Recognition, 2014, 47(10):3429-3437.
|
[24] |
SEYEDHOSSEINI M, TASDIZEN T. Disjunctive normal random forests[J]. Pattern Recognition, 2015, 48(3):976-983.
|
[25] |
BERNARD S, ADAM S, HEUTTE L. Dynamic random forests[J]. Pattern Recognition Letters, 2012, 33(12):1580-1586.
|
[26] |
VERIKAS A, GELZINIS A, BACAUSKIENE M. Mining data with random forests:a survey and results of new tests[J]. Pattern Recognition, 2011, 44(2):330-349.
|
[27] |
DÉSIR C, BERNARD S, PETITJEAN C, et al. One class random forests[J]. Pattern Recognition, 2013, 46(12):3490-3506.
|
[28] |
方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.FANG K N, WU J B, ZHU J P, et al. A review of technologies on random forests[J].Statistics & Information Forum, 2011, 26(3):32-38.
|
[29] |
RUSSELL E L, CHIANG L H, AATZ R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1):81-93.
|
[30] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[31] |
LYMAN P R, GEORGAKIS C. Plant-wide control of the Tennessee Eastman problem[J]. Computers & Chemical Engineering, 1995, 19(3):321-331.
|
[32] |
TAX D M J, DUIN R P W. Uniform object generation for optimizing one-class classifiers[J]. Journal of Machine Learning Research, 2002, 2(2):155-173.
|