[1] |
SUBRANMANI V, GANGWA S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Journal of the International Phonetic Association, 2008, 22(2):117-136.
|
[2] |
黄守莹, 王悦, 吕静, 等. 合成气经二甲醚/乙酸甲酯制无水乙醇的研究进展[J]. 化工学报, 2016, 67(1):240-247. HUANG S Y, WANG Y, LÜ J, et al. Advances in direct synthesis of ethanol from syngas via dimethyl ether/methyl acetate[J]. CIESC Journal, 2016, 67(1):240-247.
|
[3] |
JOHNSTON V J, CHEN L Y, KIMMICH B F. Direct and selective production of ethanol from acetic acid utilizing a platinum catalyst:US7863489[P]. 2013-08-01.
|
[4] |
LI X G, SAN X G, ZHANG Y, et al. Direct synthesis of ethanol from dimethyl ether and syngas over combined h-mordenite and Cu/ZnO catalysts[J]. ChemSusChem, 2010, 3(10):1192-1199.
|
[5] |
SONG A, FENG X J, XIE H, et al. Comparative analysis on two technologies of ethanol production from syngas[J]. Chinese Journal of Bioprocess Engineering, 2012, 10(5):72-78.
|
[6] |
SAN X, ZHANG Y, SHEN W, et al. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy & Fuels, 2009, 23(5):2843-2844.
|
[7] |
PATRICIA C, ADITYA B, SUNLEY G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie, 2006, 45(10):1617-1620.
|
[8] |
RASMUSSEN D B, CHRISTENSEN J M, STUDT F, et al. Reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite-a combined DFT/experimental study[J]. Catalysis Science & Technology, 2017, 7(5):1141-1152.
|
[9] |
WANG M, HUANG S, JING L, et al. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chinese Journal of Catalysis, 2016, 37(9):1530-1537.
|
[10] |
REULE A, SAWADA J, SEMAGINA N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. Journal of Catalysis, 2017, 349:98-109.
|
[11] |
ZHOU H, ZHU W, SHI L, et al. In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on h-mordenite[J]. Journal of Molecular Catalysis A Chemical, 2016, 417:1-9.
|
[12] |
CHIACA A, DIAZ U, FORNES, et al. Changing the hydroisomerization to hydrocracking ratio of long chain alkaned by varying the level of delamination in zeolitic(ITQ-6) materials[J]. Catalysis Today, 2009, 147(3/4):179-185.
|
[13] |
·HE H, HUANG X, DITZEL E, et al. Coking on micrometer-and nanometer-size mordenite during dimethyl ether carbonyaltion to methyl acetate[J]. Chinese Journal Catalysis, 2013, 34(8):1496-1503.
|
[14] |
倪友明, 朱文良, 刘红超, 等. 一种生产乙酸甲酯的方法:103896766[P]. 2014-07-02. NI Y M, ZHU W L, LIU H C, et al. A method for producing methyl acetate:103896766[P]. 2014-07-02.
|
[15] |
LIU J, XUE H, HUANG X, et al. Stability enhancement of h-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chinese Journal of Catalysis, 2010, 31(7):729-738.
|
[16] |
VOLKOA G, PLYASOVA L M, SHKURATOVA L.Solid superacids for halide-free carbonylation of dimethyl ether to methyl acetate[J]. Studies in Surface Science and Catalysis, 2004, 147(4):403-408.
|
[17] |
XUE H, HUANG X, DITZEL E, et al. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Industrial & Engineering Chemistry Research, 2013, 52(33):11510-11515.
|
[18] |
刘欣萍, 洪爱珠, 颜桂炀, 等. 失活V-P/HZSM-5分子筛的再生及催化性能研究[J]. 福建师大学报(自然科学版), 2010, 26(1):69-72. LIU X P, HONG A Z, YAN G S, et al. Study on refreshing V-P/HZSM-5 zeolite catalyst and its catalystic activity[J]. Journal of Fujian Normal University, 2010, 26(1):69-72.
|
[19] |
王晓婷. N2O一步氧化苯制苯酚Fe-ZSM-5分子筛催化剂失活与再生研究[D]. 北京:北京化工大学, 2008. WANG X T. Coke on Fe-ZSM-5 catalyst for one-step oxidation of benzene with N2O to phenol and its regeneration[D]. Beijing:Beijing University of Chemical Technology, 2008.
|
[20] |
刘亚华. 丝光沸石分子筛制备及二甲醚羰基化反应性能研究[D]. 天津:天津大学, 2015. LIU Y H. Investigation of dimethyl ether carbonylation over synthesized h-mordenite zeolite[D]. Tianjin:Tianjin University, 2015.
|
[21] |
杜明仙, 程昌瑞, 李源, 等. HDN催化剂氧化烧炭条件的考察[J]. 燃料化学学报, 1997, 25(6):528-532. DU M X, CHEN C R, LI Y, et al. Effects of oxidative carbon burnoff conditions on HDN catalyst[J]. Journal of Fuel Chemistry and Technology, 1997, 25(6):528-53
|
[22] |
李经球, 杜鸿章, 孙承林, 等. 长链烷烃脱氢催化剂的烧炭研究[J]. 工业催化, 2005, 12(1):320-324. LI J Q, DU H Z, SUN C L, et al. Study on carbonation of long-chain alkane dehydrogenation catalyst[J]. Industrial Catalysis, 2005, 12(1):320-324.
|
[23] |
张晓静, 刘雁, 陈永生. 负载型ZSM-5分子筛催化剂再生方法研究[J]. 工业催化, 2008, 16(6):23-26. ZHANG X J, LIU Y, CHEN Y S. Study on regeration of supported ZSM-5 zeolite catalysts[J]. Industrial Catalysis, 2008, 16(6):23-26.
|
[24] |
米冠杰, 李建伟, 陈标华, 等. Fe-ZSM-5分子筛催化剂的再生烧炭[J]. 石油学报, 2010, 26(6):946-950. MI G J, LI J W, CHEN B H, et al. Coke burning during regeneration of Fe-ZSM-5 zeolite catalyst[J]. Acta Petrolei Sinica, 2010, 26(6):946-950.
|
[25] |
金永明, 钟思青, 王菊, 等. 低碳烃芳构化催化剂烧炭再生动力学[J]. 化学反应工程与工艺, 2015, 31(2):177-182. JIN Y M, ZHONG S Q, WANG J, et al. Kinetics of coke combustion regeneration of light hydrocarbon aromatization catalyst[J]. Chemical Reaction Engineering and Technology, 2015, 31(2):177-182.
|
[26] |
LIU Y H, ZHAO N, XIAN H, et al. Facilely synthesized h-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Applied Materials & Interfaces, 2015, 7(16):8398-8405.
|
[27] |
LIU J L, XUE H F, HUANG X M, et al. Stability enhancement of h-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chinese Journal of Catalysis, 2010, 31(7):729-738.
|
[28] |
PINARD L, HAMIEH S, CANAFF C, et al. Growth mechanism of coke on HBEA zeolite during ethanol transformation[J]. Journal of Catalysis, 2013, 299(2):284-297.
|
[29] |
BUSCA G. The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization[J]. Physical Chemistry Chemical Physics, 1999, 1(5):723-736.
|
[30] |
POUR A, NAKAEI, HOUSAINDOKHT M R. Fischer-Tropsch synthesis on iron catalyst promoted with H-ZSM-5 zeolite:regeneration studies of catalyst[J]. Journal of Natural Gas Science Engineering, 2013, 14(9):49-54.
|