[1] |
PAULY M, KEEGSTRA K. Cell-wall carbohydrates and their modification as a resource for biofuels[J]. The Plant Journal, 2008, 54(4):559-568.
|
[2] |
LIU C, WANG H, KARIM A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22):7594-7623.
|
[3] |
MA R, GUO M, ZHANG X. Selective conversion of biorefinery lignin into dicarboxylic acids[J]. ChemSusChem, 2014, 7(2):412-415.
|
[4] |
WYMAN C E, DALE B E, ELANDER R T, et al. Coordinated development of leading biomass pretreatment technologies[J]. Bioresource Technology, 2005, 96(18):1959-1966.
|
[5] |
NIMMANWUDIPONG T, RUNNEBAUM R C, BLOCK D E, et al. Catalytic reactions of guaiacol:reaction network and evidence of oxygen removal in reactions with hydrogen[J]. Catalysis Letters, 2011, 141(6):779-783.
|
[6] |
LI C, ZHAO X, WANG A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21):11559-11624.
|
[7] |
CALVO-FLORES F G, DOBADO J, GARC A J I, et al. Lignin and Lignans as Renewable Raw Materials:Chemistry, Technology and Applications[M]. West Sussex:John Wiley & Sons, Ltd, 2015:521.
|
[8] |
叶跃元. 木质素解聚新工艺及机理研究[D]. 广州:华南理工大学, 2012. YE Y Y. Process and mechanism research on lignin depolymerization[D]. Guangzhou:South China University of Technology, 2012.
|
[9] |
蒋挺大. 木质素[M]. 2版. 北京:化学工业出版社, 2009. JIANG T D. Lignin[M]. 2nd ed. Beijing:Chemical Industry Press, 2009.
|
[10] |
GELLERSTEDT G. Softwood kraft lignin:raw material for the future[J]. Industrial Crops and Products, 2015, 77:845-854.
|
[11] |
舒日洋, 徐莹, 张琦, 等. 木质素催化解聚的研究进展[J]. 化工学报, 2016, 67(11):4523-4532. SHU R Y, XU Y, ZHANG Q, et al. Progress in catalytic depolymerization of lignin[J]. CIESC Journal, 2016, 67(11):4523-4532.
|
[12] |
HALMA M, LACHENAL D, MARLIN N, et al. H2O2 oxidation of lignin model dimers catalyzed by copper(Ⅱ)-phenanthroline[J]. Industrial Crops and Products, 2015, 74:514-522.
|
[13] |
OUYANG X P, TAN Y D, QIU X Q. Oxidative degradation of lignin for producing monophenolic compounds[J]. Journal of Fuel Chemistry and Technology, 2014, 42(6):677-682.
|
[14] |
ZHOU X F. Catalytic oxidation and conversion of kraft lignin into phenolic products using zeolite-encapsulated Cu(Ⅱ)[H4] salen and[H2] salen complexes[J]. Environmental Progress & Sustainable Energy, 2015, 34(4):1120-1128.
|
[15] |
OUYANG X, RUAN T, QIU X. Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds[J]. Fuel Processing Technology, 2016, 144:181-185.
|
[16] |
YANG Q, SHI J, LIN L, et al. Characterization of changes of lignin structure in the processes of cooking with solid alkali and different active oxygen[J]. Bioresource Technology, 2012, 123:49-54.
|
[17] |
RAHIMI A, AZARPIRA A, KIM H, et al. Chemoselective metal-free aerobic alcohol oxidation in lignin[J]. Journal of the American Chemical Society, 2013, 135(17):6415-6418.
|
[18] |
HANSON S K, BAKER R T, GORDON J C, et al. Aerobic oxidation of pinacol by vanadium(V) dipicolinate complexes:evidence for reduction to vanadium(Ⅲ)[J]. Journal of the American Chemical Society, 2009, 131(2):428-429.
|
[19] |
HANSON S K, BAKER R T, GORDON J C, et al. Mechanism of alcohol oxidation by dipicolinate vanadium(V):unexpected role of pyridine[J]. Journal of the American Chemical Society, 2010, 132(50):17804-17816.
|
[20] |
HANSON S K, BAKER R T, GORDON J C, et al. Aerobic oxidation of lignin models using a base metal vanadium catalyst[J]. Inorganic Chemistry, 2010, 49(12):5611-5618.
|
[21] |
HANSON S K, WU R, SILKS L A P. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air[J]. Organic Letters, 2011, 13(8):1908-1911.
|
[22] |
SEDAI B, DÍAZ-URRUTIA C, BAKER R T, et al. Comparison of copper and vanadium homogeneous catalysts for aerobic oxidation of lignin models[J]. ACS Catalysis, 2011, 1(7):794-804.
|
[23] |
HANSON S K, WU R, SILKS L A P. C-C or C-O bond cleavage in a phenolic lignin model compound:selectivity depends on vanadium catalyst[J]. Angewandte Chemie International Edition, 2012, 51(14):3410-3413.
|
[24] |
ZHANG G, SCOTT B L, WU R, et al. Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands[J]. Inorganic Chemistry, 2012, 51(13):7354-7361.
|
[25] |
SCHEUERMANN M L, LUEDTKE A T, HANSON S K, et al. Reactions of five-coordinate platinum(IV) complexes with molecular oxygen[J]. Organometallics, 2013, 32(17):4752-4758.
|
[26] |
SEDAI B, DÍAZ-URRUTIA C, BAKER R T, et al. Aerobic oxidation of β-1 lignin model compounds with copper and oxovanadium catalysts[J]. ACS Catalysis, 2013, 3(12):3111-3122.
|
[27] |
HANSON S K, BAKER R T. Knocking on wood:base metal complexes as catalysts for selective oxidation of lignin models and extracts[J]. Accounts of Chemical Research, 2015, 48(7):2037-2048.
|
[28] |
DÍAZ-URRUTIA C, SEDAI B, LECKETT K C, et al. Aerobic oxidation of 2-phenoxyethanol lignin model compounds using vanadium and copper catalysts[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(11):6244-6251.
|
[29] |
SHELDON R A, ARENDS I W C E. Catalytic oxidations mediated by metal ions and nitroxyl radicals[J]. Journal of Molecular Catalysis A:Chemical, 2006, 251(1/2):200-214.
|
[30] |
KISHIOKA S Y, YAMADA A. Kinetic study of the catalytic oxidation of benzyl alcohols by phthalimide-n-oxyl radical electrogenerated in acetonitrile using rotating disk electrode voltammetry[J]. Journal of Electroanalytical Chemistry, 2005, 578(1):71-77.
|
[31] |
ISHⅡ Y, SAKAGUCHI S, IWAHAMA T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions[J]. Advanced Synthesis & Catalysis, 2001, 343(5):393-427.
|
[32] |
ISHⅡ Y, SAKAGUCHI S. Recent progress in aerobic oxidation of hydrocarbons by n-hydroxyimides[J]. Catalysis Today, 2006, 117(1/2/3):105-113.
|
[33] |
IWAHAMA T, SYOJYO K, SAKAGUCHI S, et al. Direct conversion of cyclohexane into adipic acid with molecular oxygen catalyzed by n-hydroxyphthalimide combined with Mn(acac)2 and Co(OAc)2[J]. Organic Process Research & Development, 1998, 2(4):255-260.
|
[34] |
SHIRAISHI T, TAKANO T, KAMITAKAHARA H, et al. Studies on electro-oxidation of lignin and lignin model compounds(Part 2):N-hydroxyphthalimide (NHPI)-mediated indirect electro-oxidation of non-phenolic lignin model compounds[J]. Holzforschung:International Journal of the Biology, Chemistry, Physics, & Technology of Wood, 2012, 66(3):311-315.
|
[35] |
PINHEIRO F G C, SOARES A K L, SANTAELLA S T, et al. Optimization of the acetosolv extraction of lignin from sugarcane bagasse for phenolic resin production[J]. Industrial Crops and Products, 2017, 96:80-90.
|
[36] |
GÜVENATAM B, HEERES E H J, PIDKO E A, et al. Decomposition of lignin model compounds by lewis acid catalysts in water and ethanol[J]. Journal of Molecular Catalysis A:Chemical, 2015, 410:89-99.
|
[37] |
ISHⅡ Y, IWAHAMA T, SAKAGUCHI S, et al. Alkane oxidation with molecular oxygen using a new efficient catalytic system:N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n=2 or 3)[J]. The Journal of Organic Chemistry, 1996, 61(14):4520-4526.
|
[38] |
ZHOU Y, LIN S, BIAN Y, et al. Aerobic oxidation of aromatics catalyzed by CoSPc and NHPI[J]. Indian Journal of Chemistry-Section B Organic and Medicinal Chemistry, 2016, 55B(5):624-628.
|