[1] |
LIU Z, WANG D, NING T, et al. Sustainability assessment of straw utilization circulation modes based on the emergetic ecological footprint[J]. Ecological Indicators, 2017, 75:1-7.
|
[2] |
冯伟, 张利群, 庞中伟, 等. 中国秸秆废弃焚烧与资源化利用的经济与环境分析[J]. 中国农学通报, 2011, (6):350-354. FENG W, ZHANG L Q, PANG Z W, et al. The economic and environmental analysis of crop residues burning and reutilization in China[J]. Chinese Agricultural Science Bulletin, 2011, (6):350-354.
|
[3] |
FENG W, ZHANG L Q, HE L J, et al. A mode research of straw recycling based on circular agriculture theory[J]. Agricultural Science & Technology-Hunan, 2011, 12(12):1921-1924.
|
[4] |
吴创之, 马隆龙. 生物质能现化化利用技术[M]. 北京:化学工业出版社, 2003:197-201. WU C Z, MA L L. Modern Utilization Technology of Biomass Energy[M]. Beijing:Chemical Industry Process, 2003:197-201.
|
[5] |
AHRENFELDT J, EGSGAARD H, STELTE W, et al. The influence of partial oxidation mechanisms on tar destruction in two stage biomass gasification[J]. Fuel, 2013, 112:662-680.
|
[6] |
武景丽, 汪丛伟, 阴秀丽, 等. 基于TG-FTIR的生物油重质组分热解特性研究[J]. 太阳能学报, 2010, 31(1):113-117. WU J L, WANG C W, YIN X L, et al. Study on pyrolysis of heavy by using TG-FTIR fractions of bio-oil[J]. Acta Energiae Solaris Sinica, 2010, 31(1):113-117.
|
[7] |
吕微, 张琦, 王铁军, 等. 生物油重质组分模型物热解行为及其动力学研究[J]. 燃料化学学报, 2013, (2):198-206. LÜ W, ZHANG Q, WANG T J, et al. Thermal degradation behaviors and pyrolysis kinetics of model compounds of bio-oil heavy fractions[J]. Journal of Fuel Chemistry and Technology, 2013, (2):198-206.
|
[8] |
张摇怡, 陈登宇, 张摇栋, 等. 生物油TG-FTIR分析与热解气化特性研究[J]. 燃料化学学报, 2012, (10):1194-1199. ZHANG Y Y, CHEN D Y, ZHANG Y D, et al. TG-FTIR analysis of bio-oil and its pyrolysis/gasification property[J]. Journal of Fuel Chemistry and Technology, 2012, (10):1194-1199.
|
[9] |
PANIGRAHI S, CHAUDHARI S T, BAKHSHI N N, et al. Production of synthesis gas/high-Btu gaseous fuel from pyrolysis of biomass-derived oil[J]. Energy & Fuels, 2002, 16(6):1392-1397.
|
[10] |
张鹏. 生物油模型物催化气化制备氢气的研究[D]. 合肥:安徽理工大学, 2012. ZHANG P. Hydrogen preparation from catalytic gasification of bio-oil model compound[D]. Hefei:Anhui University of Science and Technology, 2012.
|
[11] |
吴层, 颜涌捷, 张素平, 等. 生物质快速裂解油水蒸气催化重整制氢的研究[J]. 太阳能学报, 2008, 29(9):1144-1148. WU C, YAN Y J, ZHANG S P, et al. Study on hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil[J]. Acta Energiae Solaris Sinica, 2008, 29(9):1144-1148.
|
[12] |
ZHENG J L, ZHU M Q, WEN J L, et al. Gasification of bio-oil:effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency[J]. Bioresource Technology, 2016, 211:164-172.
|
[13] |
MEDRANO J A, OLIVA M, RUIZ J, et al. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed[J]. Energy, 2011, 36(4):2215-2224.
|
[14] |
DAVIDIAN T, GUILHAUME N, IOJOIU E, et al. Hydrogen production from crude pyrolysis oil by a sequential catalytic process[J]. Applied Catalysis B:Environmental, 2007, 73(1):116-127.
|
[15] |
YUNG M M, JABLONSKI W S, MAGRINI-BAIR K A. Review of catalytic conditioning of biomass-derived syngas[J]. Energy & Fuels, 2009, 23(4):1874-1887.
|
[16] |
李顺清, 雷廷宙, 朱金陵, 等. Ru-Cu-Ni-CeO2/HZSM-5催化剂裂解秸秆气化焦油性能研究[J]. 河南科学, 2012, 30(9):1251-1255. LI S Q, LEI T J, ZHU J L, et al. Cracking of tar from straw gasification over Ru-Cu-Ni-CeO2/HZSM-5 catalysts[J]. Henan Science, 2012, 30(9):1251-1255.
|
[17] |
WU C, HUANG Q, SUI M, et al. Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system[J]. Fuel Processing Technology, 2008, 89(12):1306-1316.
|
[18] |
贾立. 生物质热解气白云石催化重整的实验研究[D]. 武汉:华中科技大学, 2007. JIA L. An experimental research on reforming pyrolyzation gas with dolomite[D]. Wuhan:Huazhong University of Science and Technology, 2007.
|
[19] |
周丛丛. 生物质焦油水蒸气重整橄榄石载铁催化剂的研究[D]. 大连:大连理工大学, 2013. ZHOU C C. Effect of Fe2O3/olivine on the catalytic steam reforming of bio-oil[D]. Dalian:Dalian University of Technology, 2013.
|
[20] |
米铁, 吴正舜, 余新明, 等. CaO催化裂解生物质气化焦油实验研究[J]. 太阳能学报, 2011, 32(5):724-729. MI T, WU Z S, YU X M, et al. The experimental study on biomass tar-cracking by CaO catalyst[J]. Acta Energiae Solaris Sinica, 2011, 32(5):724-729.
|
[21] |
吕俊复, 岳光溪. 氧化钙条件下焦油主要组分的催化裂解[J]. 清华大学学报(自然科学版), 1997, 37(2):6-10. LÜ J F, YUE G X. Catalytic cracking reactions of tar components over CaO[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(2):6-10.
|
[22] |
吴娟, 陈海军, 朱跃钊, 等. 基于回收理念的生物质燃气焦油脱除研究进展[J]. 化工进展, 2013, 32(9):2099-2105. WU J, CHEN H J, ZHU Y Z, et al. Biomass producer gas tar removal technology based on recovery idea[J]. Chemical Industry and Engineering Progress, 2013, 32(9):2099-2105.
|
[23] |
裴闯, 张光义, 李文秀, 等. 高掺量油页岩灰制备烧结砖实验研究[J]. 新型建筑材料, 2016, (8):106-114. PEI C, ZHANG G Y, LI W X, et al. Experimental research on sintered brick preparation from oil shale ash with high blend dosage[J]. New Building Materials, 2016, (8):106-114.
|
[24] |
MAI U, SOMELAR P, RAADO L M, et al. Oil shale ash based backfilling concrete-strength development, mineral transformations and leachability[J]. Construction & Building Materials, 2016, 102:620-630.
|
[25] |
LAI D, CHEN Z, LIN L, et al. Secondary cracking and upgrading of shale oil from pyrolyzing oil shale over shale ash[J]. Energy & Fuels, 2015, 29(4):2219-2226.
|
[26] |
惠世恩, 梁凌, 刘长春, 等. 升温速率、气氛与粒径对玉米秸秆热解特性的影响[J]. 热力发电, 2014, (5):59-64. HUI S E, LIANG L, LIU C C, et al. Effects of heating rate, atmosphere and particle size on corn stalk's pyrolysis characteristics[J]. Thermal Power Eneration, 2014, (5):59-64.
|
[27] |
GARCIA-PEREZ M, WANG X S, SHEN J, et al. Fast pyrolysis of oil mallee woody biomass:effect of temperature on the yield and quality of pyrolysis products[J]. Industrial & Engineering Chemistry Research, 2008, 47(6):1846-1854.
|
[28] |
NIU Y, TAN H, LIU Y, et al. The effect of particle size and heating rate on pyrolysis of waste capsicum stalks biomass[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2013, 35(17):1663-1669.
|
[29] |
江程程, 肖波, 胡智泉, 等. 不同气氛下生物质焦油气化制备合成气[J]. 安徽农业科学, 2011, 39(24):14775-14777. JIANG C C, HU B, HU Z Q, et al. Gasification of tar from biomass pyrolysis for syngas under different atmospheres[J]. Journal of Anhui Agricultural Sciences, 2011, 39(24):14775-14777.
|
[30] |
常风民, 王启宝, 贾晋炜, 等. 城市污泥两段式催化热解制合成气研究[J]. 中国环境科学, 2015, 35(3):804-810. CHANG F M, WANG Q B, JIA J W, et al. Two-stage catalytic pyrolysis of sewage sludge for syngas production[J]. China Environmental Science, 2015, 35(3):804-810.
|
[31] |
CHEN Y, LUO Y, WU W, et al. Experimental investigation on tar formation and destruction in a lab-scale two-stage reactor[J]. Energy & Fuels, 2009, 23(9):4659-4667.
|
[32] |
张郑磊, 柳丹, 王晋权. 不同催化剂下玉米秸秆热解产物特性研究[J]. 锅炉技术, 2008, (6):75-78. ZHANG Z L, LIU D, WANG J Q. Research about the pyrolysis products characteristics of corn stalk with different catalysts[J]. Boiler Technology, 2008, (6):75-78.
|
[33] |
BACKMAN R, SKRIFVARS B J, HUPA M, et al. Flue gas and dust chemistry in recovery boilers with high levels of chlorine and potassium[J]. Journal of Pulp & Paper Science, 1996, 22:J119-J126.
|