[1] |
中华人民共和国环境保护部.炼焦化学工业污染物排放标准:GB 16171-2012[S]. 北京:中国环境科学出版社, 2012. People's Republic of China environmental protection department. Coking chemical industry pollutant emission standards:GB 16171-2012[S]. Beijing:China Environmental Science Press, 2012.
|
[2] |
吴小平, 王学雷, 宋云华. 一种焦炉烟气湿式脱硫脱硝工艺及其工业应用[J]. 燃料与化工, 2016, 47(5):31-34. WU X P, WANG X L, SONG Y H. An integrated wet desulfurization and denitration process for coke oven flue gas and its industrial application[J]. Fuel and Chemical Engineering, 2016, 47(5):31-34.
|
[3] |
赵文玉, 张逢, 胡洪营, 等. 污水再生处理臭氧氧化系统运行费用分析[J]. 环境科学与技术, 2011, 34(9):126-129. ZHAO W Y, ZHANG F, HU H Y, et al. Analysis of running cost and its influence factors of an ozone-oxidation system for wastewater reclaim and reuse[J]. Fuel and Chemical Engineering, 2011, 34(9):126-129.
|
[4] |
方朝君, 金理鹏, 余美玲. SCR脱硝喷氨优化与运行控制研究[J]. 电力科技与环保, 2015, 31(6):39-42. FANG C J, JIN L P, SHE M L. Research on optimization adjustment for ammonia injection and operation of SCR denitration system in coal-fired power plant[J]. Electric Power Environmental Protection, 2015, 31(6):39-42.
|
[5] |
朱宇翔, 顾云非. SCR脱硝系统氨需量计算的优化[J]. 电力科技与环保, 2014, 30(5):30-32. ZHU Y X, GU Y F. Optimization for ammonia requirement of SCR De-NOx system[J]. Electric Power Environmental Protection, 2014, 30(5):30-32.
|
[6] |
周洪煜, 张振华, 张军, 等. 超临界锅炉烟气脱硝喷氨量混结构-径向基函数神经网络最优控制[J]. 中国电机工程学报, 2011, 31(5):108-113. ZHOU H Y, ZHANG Z H, ZHANG J, et al. Mixed structure-radial basis function neural network optimal control on spraying ammonia flow for supercritical boiler flue gas denitrification[J]. Proceedings of the CSEE, 2011, 31(5):108-113.
|
[7] |
DEVARAKONDA M, PARKER G, JOHNSON J H, et al.Model-based control system design in a urea-SCR aftertreatment system based on NH3 sensor feedback[J]. International Journal of Automotive Technology, 2009, 10(6):653-662.
|
[8] |
陈培国. 玻璃窑炉烟气脱硝SCR反应控制系统设计与研究[D]. 南京:南京理工大学, 2013. CHEN P G. Design and research of SCR reaction control system for glass furnace flue gas denitrification[D]. Nanjing:Nanjing University of Science and Technology, 2013.
|
[9] |
何伟, 鲁明, 李国强, 等. SNCR脱硝系统的广义预测控制[J]. 2016, 52(5):38-41. HE W, LU M, LI G Q, et al. Generalized predictive control on SNCR denitration system[J]. Automation in Petro-Chemical Industry, 2016, 52(5):38-41.
|
[10] |
孟斌. 基于模糊理论的电厂脱硝氨气流量系统的控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2015. MENG B. Research on the control method of the ammonia gas flow system of power plant denitrification based on fuzzy theory[D]. Harbin:Harbin Institute of Technology, 2015.
|
[11] |
陈荣超. 燃煤电厂脱硝NOx的软测量技术和自动控制优化[J].电力科学与工程, 2015, 31(1):15-19. CHEN R C. Soft sensor technology and automatic control optimization of denitrification in coal fired power plant[J]. Electric Power Science and Engineering, 2015, 31(1):15-19.
|
[12] |
LIANG X, XIAO J, XU Y, et al. CFD simulations to research the control rules with gate leaves in SCR-De NOx facility for marine diesel engines[C]//2015 Chinese Control Conf. Hangzhou, 2015:8829-8833.
|
[13] |
GAO Y, HU X M. Study of the performance on magnesia base catalyst used for flue gas denitration[C]//20093rd International Conference on Bioinformatics and Biomedical Engineering. Beijing, 2009.
|
[14] |
MOK Y S, LEE H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique[J]. Fuel Processing Technology, 2006, 87:591-597.
|
[15] |
WANG Z H, ZHOU J H, FAN J R, et al. Direct numerical simulation of ozone injection technology for NOx control in flue gas[J]. Energy & Fuels, 2006, 20(6):2432-2438.
|
[16] |
WANG Z H, ZHOU J H, ZHU Y Q, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:experimental results[J]. Fuel Processing Technology, 2007, 88(8):817-823.
|
[17] |
SUN W Y, DING S L, ZENG S S, et al. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone[J]. Journal of Hazardous Materials, 2011, 192(1):124-130.
|
[18] |
郭少鹏. 湿式氨法烟气脱硫及结合臭氧氧化实现同时脱硫脱硝的研究[D].上海:华东理工大学, 2015. GUO S P. Research on ammonia-based wet flue gas desulfurization and simultaneous desulfurization and denitrification combined with ozone oxidation[D]. Shanghai:East China University of Science and Technology, 2015.
|
[19] |
马双忱, 苏敏, 孙云雪, 等. O3氧化模拟烟气脱硫脱硝的实验研究[J]. 中国电机工程学报, 2010, 30:81-84. MA S C, SU M, SUN Y X, et al. Experimental studies on removal SO2 and NOx from simulating flue gas with O3 oxidation[J]. Proceedings of the CSEE, 2010, 30:81-84.
|
[20] |
严爱军, 柴天佑, 王普. 基于案例推理的竖炉故障预报系统[J]. 控制与决策, 2008, 23(2):177-181. YAN A J, CHAI T Y, WANG P. Fault prediction system using case-based reasoning for shaft furnace status[J]. Control and Decision, 2008, 23(2):177-181.
|
[21] |
YAN A J, CHAI T Y, YU W, et al. Multi-objective evaluation based hybrid intelligent control optimization for shaft furnace roasting process[J]. Control Engineering Practice, 2012, 20(9):857-868.
|
[22] |
CHAI T Y, QIN S J, WANG H. Optimal operational control for complex industrial processes[J]. Annual Reviews in Control, 2014, 38:81-92.
|
[23] |
WU Z W, WU Y J, CHAI T Y. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1703-1715.
|
[24] |
桂卫华, 阳春华, 李勇刚, 等. 基于数据驱动的铜闪速熔炼过程操作模式优化及应用[J]. 自动化学报, 2009, 35(6):717-724. GUI W H, YANG C H, LI Y G, et al. Data-driven operational-pattern optimization for copper flash smelting process[J]. Acta Automatica Sinica, 2009, 35(6):717-724.
|
[25] |
伍铁斌, 阳春华, 李勇刚, 等. 基于模糊操作模式的砷盐除钴过程操作参数协同优化[J]. 自动化学报, 2014, 40(8):1690-1698. WU T B, YANG C H, LI Y G, et al. Fuzzy operational-pattern based operating parameters collaborative optimization of cobalt removal process with arsenic salt[J]. Acta Automatica Sinica, 2014, 40(8):1690-1698.
|
[26] |
桂卫华, 刘建华, 谢永芳. 铜闪速熔炼过程操作模式分级匹配技术与演化策略[J]. 系统工程理论与实践, 2013, 33(10):2714-2720. GUI W H, LIU J H, XIE Y F. Operational pattern hierarchical matching and evolution strategy for copper flash smelting process[J]. System Eng. Theor. Prac., 2013, 33(10):2714-2720.
|
[27] |
桂卫华, 刘建华, 谢永芳. 铜闪速熔炼过程操作模式快速匹配策略[J]. 控制与决策, 2013, 28(1):120-125. GUI W H, LIU J H, XIE Y F. Operational pattern fast matching strategy for copper flash smelting process[J]. Control and Decision, 2013, 28(1):120-125.
|
[28] |
LEE S W, SEO K K. Intelligent fault diagnosis based on a hybrid multi-class support vector machines and case-based reasoning approach[J]. Journal of Computational and Theoretical Nan Science, 2013, 10(8):1727-1734.
|
[29] |
CHUANG C L. Application of hybrid case-based reasoning for enhanced performance in bankruptcy prediction[J]. Information Sciences, 2013, 236(7):174-185.
|
[30] |
HAN M, CAO Z J. An improved case-based reasoning method and its application in endpoint prediction of basic oxygen furnace[J]. Neurocomputing, 2015, 149:1245-1252.
|
[31] |
HE F, XU A J, WANG H B, et al. End temperature prediction of molten steel in LF based on CBR[J]. Steel Research International, 2016, 87(1):79-86.
|
[32] |
AHNA J, PARKB M, LEEB H S, et al. Covariance effect analysis of similarity measurement methods for early construction cost estimation using case-based reasoning[J]. Automation in Construction, 2017, 81:254-266.
|
[33] |
ZHAO H, LIU J W, DONG W, et al. An improved case-based reasoning method and its application on fault diagnosis of Tennessee Eastman process[J]. Neurocomputing, 2017, 249:266-276.
|