CIESC Journal ›› 2018, Vol. 69 ›› Issue (3): 998-1007.DOI: 10.11949/j.issn.0438-1157.20170807
Previous Articles Next Articles
LI Yaning1,2, WANG Xuelei1, TAN Jie1
Received:
2017-06-23
Revised:
2017-08-08
Online:
2018-03-05
Published:
2018-03-05
Supported by:
supported by the National Natural Science Foundation of China[U1701262] and the 2016 Intelligent Manufacturing Project of the Ministry of Industry and Information Technology of China (2016ZXFM06005).
李亚宁1,2, 王学雷1, 谭杰1
通讯作者:
王学雷
基金资助:
国家自然科学基金项目(U1701262);2016年工信部智能制造试点示范项目(2016ZXFM06005)。
CLC Number:
LI Yaning, WANG Xuelei, TAN Jie. PCR-multi-case fusion method for setting optimal process indices of coking flue gas denitration[J]. CIESC Journal, 2018, 69(3): 998-1007.
李亚宁, 王学雷, 谭杰. 基于PCR-多案例融合的焦化烟气脱硝过程指标优化设定[J]. 化工学报, 2018, 69(3): 998-1007.
[1] | 中华人民共和国环境保护部.炼焦化学工业污染物排放标准:GB 16171-2012[S]. 北京:中国环境科学出版社, 2012. People's Republic of China environmental protection department. Coking chemical industry pollutant emission standards:GB 16171-2012[S]. Beijing:China Environmental Science Press, 2012. |
[2] | 吴小平, 王学雷, 宋云华. 一种焦炉烟气湿式脱硫脱硝工艺及其工业应用[J]. 燃料与化工, 2016, 47(5):31-34. WU X P, WANG X L, SONG Y H. An integrated wet desulfurization and denitration process for coke oven flue gas and its industrial application[J]. Fuel and Chemical Engineering, 2016, 47(5):31-34. |
[3] | 赵文玉, 张逢, 胡洪营, 等. 污水再生处理臭氧氧化系统运行费用分析[J]. 环境科学与技术, 2011, 34(9):126-129. ZHAO W Y, ZHANG F, HU H Y, et al. Analysis of running cost and its influence factors of an ozone-oxidation system for wastewater reclaim and reuse[J]. Fuel and Chemical Engineering, 2011, 34(9):126-129. |
[4] | 方朝君, 金理鹏, 余美玲. SCR脱硝喷氨优化与运行控制研究[J]. 电力科技与环保, 2015, 31(6):39-42. FANG C J, JIN L P, SHE M L. Research on optimization adjustment for ammonia injection and operation of SCR denitration system in coal-fired power plant[J]. Electric Power Environmental Protection, 2015, 31(6):39-42. |
[5] | 朱宇翔, 顾云非. SCR脱硝系统氨需量计算的优化[J]. 电力科技与环保, 2014, 30(5):30-32. ZHU Y X, GU Y F. Optimization for ammonia requirement of SCR De-NOx system[J]. Electric Power Environmental Protection, 2014, 30(5):30-32. |
[6] | 周洪煜, 张振华, 张军, 等. 超临界锅炉烟气脱硝喷氨量混结构-径向基函数神经网络最优控制[J]. 中国电机工程学报, 2011, 31(5):108-113. ZHOU H Y, ZHANG Z H, ZHANG J, et al. Mixed structure-radial basis function neural network optimal control on spraying ammonia flow for supercritical boiler flue gas denitrification[J]. Proceedings of the CSEE, 2011, 31(5):108-113. |
[7] | DEVARAKONDA M, PARKER G, JOHNSON J H, et al.Model-based control system design in a urea-SCR aftertreatment system based on NH3 sensor feedback[J]. International Journal of Automotive Technology, 2009, 10(6):653-662. |
[8] | 陈培国. 玻璃窑炉烟气脱硝SCR反应控制系统设计与研究[D]. 南京:南京理工大学, 2013. CHEN P G. Design and research of SCR reaction control system for glass furnace flue gas denitrification[D]. Nanjing:Nanjing University of Science and Technology, 2013. |
[9] | 何伟, 鲁明, 李国强, 等. SNCR脱硝系统的广义预测控制[J]. 2016, 52(5):38-41. HE W, LU M, LI G Q, et al. Generalized predictive control on SNCR denitration system[J]. Automation in Petro-Chemical Industry, 2016, 52(5):38-41. |
[10] | 孟斌. 基于模糊理论的电厂脱硝氨气流量系统的控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2015. MENG B. Research on the control method of the ammonia gas flow system of power plant denitrification based on fuzzy theory[D]. Harbin:Harbin Institute of Technology, 2015. |
[11] | 陈荣超. 燃煤电厂脱硝NOx的软测量技术和自动控制优化[J].电力科学与工程, 2015, 31(1):15-19. CHEN R C. Soft sensor technology and automatic control optimization of denitrification in coal fired power plant[J]. Electric Power Science and Engineering, 2015, 31(1):15-19. |
[12] | LIANG X, XIAO J, XU Y, et al. CFD simulations to research the control rules with gate leaves in SCR-De NOx facility for marine diesel engines[C]//2015 Chinese Control Conf. Hangzhou, 2015:8829-8833. |
[13] | GAO Y, HU X M. Study of the performance on magnesia base catalyst used for flue gas denitration[C]//20093rd International Conference on Bioinformatics and Biomedical Engineering. Beijing, 2009. |
[14] | MOK Y S, LEE H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique[J]. Fuel Processing Technology, 2006, 87:591-597. |
[15] | WANG Z H, ZHOU J H, FAN J R, et al. Direct numerical simulation of ozone injection technology for NOx control in flue gas[J]. Energy & Fuels, 2006, 20(6):2432-2438. |
[16] | WANG Z H, ZHOU J H, ZHU Y Q, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:experimental results[J]. Fuel Processing Technology, 2007, 88(8):817-823. |
[17] | SUN W Y, DING S L, ZENG S S, et al. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone[J]. Journal of Hazardous Materials, 2011, 192(1):124-130. |
[18] | 郭少鹏. 湿式氨法烟气脱硫及结合臭氧氧化实现同时脱硫脱硝的研究[D].上海:华东理工大学, 2015. GUO S P. Research on ammonia-based wet flue gas desulfurization and simultaneous desulfurization and denitrification combined with ozone oxidation[D]. Shanghai:East China University of Science and Technology, 2015. |
[19] | 马双忱, 苏敏, 孙云雪, 等. O3氧化模拟烟气脱硫脱硝的实验研究[J]. 中国电机工程学报, 2010, 30:81-84. MA S C, SU M, SUN Y X, et al. Experimental studies on removal SO2 and NOx from simulating flue gas with O3 oxidation[J]. Proceedings of the CSEE, 2010, 30:81-84. |
[20] | 严爱军, 柴天佑, 王普. 基于案例推理的竖炉故障预报系统[J]. 控制与决策, 2008, 23(2):177-181. YAN A J, CHAI T Y, WANG P. Fault prediction system using case-based reasoning for shaft furnace status[J]. Control and Decision, 2008, 23(2):177-181. |
[21] | YAN A J, CHAI T Y, YU W, et al. Multi-objective evaluation based hybrid intelligent control optimization for shaft furnace roasting process[J]. Control Engineering Practice, 2012, 20(9):857-868. |
[22] | CHAI T Y, QIN S J, WANG H. Optimal operational control for complex industrial processes[J]. Annual Reviews in Control, 2014, 38:81-92. |
[23] | WU Z W, WU Y J, CHAI T Y. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1703-1715. |
[24] | 桂卫华, 阳春华, 李勇刚, 等. 基于数据驱动的铜闪速熔炼过程操作模式优化及应用[J]. 自动化学报, 2009, 35(6):717-724. GUI W H, YANG C H, LI Y G, et al. Data-driven operational-pattern optimization for copper flash smelting process[J]. Acta Automatica Sinica, 2009, 35(6):717-724. |
[25] | 伍铁斌, 阳春华, 李勇刚, 等. 基于模糊操作模式的砷盐除钴过程操作参数协同优化[J]. 自动化学报, 2014, 40(8):1690-1698. WU T B, YANG C H, LI Y G, et al. Fuzzy operational-pattern based operating parameters collaborative optimization of cobalt removal process with arsenic salt[J]. Acta Automatica Sinica, 2014, 40(8):1690-1698. |
[26] | 桂卫华, 刘建华, 谢永芳. 铜闪速熔炼过程操作模式分级匹配技术与演化策略[J]. 系统工程理论与实践, 2013, 33(10):2714-2720. GUI W H, LIU J H, XIE Y F. Operational pattern hierarchical matching and evolution strategy for copper flash smelting process[J]. System Eng. Theor. Prac., 2013, 33(10):2714-2720. |
[27] | 桂卫华, 刘建华, 谢永芳. 铜闪速熔炼过程操作模式快速匹配策略[J]. 控制与决策, 2013, 28(1):120-125. GUI W H, LIU J H, XIE Y F. Operational pattern fast matching strategy for copper flash smelting process[J]. Control and Decision, 2013, 28(1):120-125. |
[28] | LEE S W, SEO K K. Intelligent fault diagnosis based on a hybrid multi-class support vector machines and case-based reasoning approach[J]. Journal of Computational and Theoretical Nan Science, 2013, 10(8):1727-1734. |
[29] | CHUANG C L. Application of hybrid case-based reasoning for enhanced performance in bankruptcy prediction[J]. Information Sciences, 2013, 236(7):174-185. |
[30] | HAN M, CAO Z J. An improved case-based reasoning method and its application in endpoint prediction of basic oxygen furnace[J]. Neurocomputing, 2015, 149:1245-1252. |
[31] | HE F, XU A J, WANG H B, et al. End temperature prediction of molten steel in LF based on CBR[J]. Steel Research International, 2016, 87(1):79-86. |
[32] | AHNA J, PARKB M, LEEB H S, et al. Covariance effect analysis of similarity measurement methods for early construction cost estimation using case-based reasoning[J]. Automation in Construction, 2017, 81:254-266. |
[33] | ZHAO H, LIU J W, DONG W, et al. An improved case-based reasoning method and its application on fault diagnosis of Tennessee Eastman process[J]. Neurocomputing, 2017, 249:266-276. |
[1] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[2] | QING Mengxia, ZHANG Xin, LIU Liang, ZHANG Wei, WANG Lele, SU Sheng, KONG Fanhai, XIANG Jun. Study on deposition and decomposition characteristics of ammonium bisulfate/ammonium sulfate as by-product of denitration in coal-fired flue gas [J]. CIESC Journal, 2021, 72(2): 1132-1141. |
[3] | Xin ZHUO, Minghui QIU, Ping LUO. Mass transfer performance and resistance analysis of chemical absorption of NOx based on ceramic membrane contactor [J]. CIESC Journal, 2020, 71(8): 3652-3660. |
[4] | Shaolun WANG, Hong YANG. Nitrification characteristics and application research of high-efficiency embedded filler [J]. CIESC Journal, 2020, 71(5): 2305-2311. |
[5] | Changjin TANG,Jingfang SUN,Lin DONG. Recent progress on elimination of NOx from flue gas via SCR technology under ultra-low temperatures (< 150℃) [J]. CIESC Journal, 2020, 71(11): 4873-4884. |
[6] | Xiaoling ZHANG,Jianing BAO,Yunjia LI,Lin HUANGFU,Wensong LI,Shiqiu GAO,Guangwen XU,Changming LI,Jian YU. Preparation and industrial application of MnOx particle catalyst for low temperature denitration [J]. CIESC Journal, 2020, 71(11): 5169-5177. |
[7] | Zhiqiang GENG, Shaoxing JING, Ju BAI, Zhongkai WANG, Qunxiong ZHU, Yongming HAN. Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries [J]. CIESC Journal, 2019, 70(2): 572-580. |
[8] | Jinyu WANG, Huaizhi ZHU, Zewen AN, Jian GONG, Cuiping WANG. Simulation and experimental study on modification of water and sulfur resistance by Mn-based denitration catalyst [J]. CIESC Journal, 2019, 70(12): 4635-4644. |
[9] | LI Yaning, WANG Xuelei, TAN Jie, LIU Chengbao, BAI Xiwei. Disturbance modeling and feedforwad control of flue gas denitration in coking reverse process [J]. CIESC Journal, 2017, 68(8): 3168-3176. |
[10] | TANG Zhigang, HE Zhimin, Ebrahim, GUO Dong, ZHAO Zhijun, XING Xiao, WEN Yanming, WANG Dengfu, JIANG Aiguo, KANG Chunqing, LIU Jingxue. Desulfurization and denitration integrative process for coke oven flue gas using dual ammonia solution: from laboratory to industrial test [J]. CIESC Journal, 2017, 68(2): 496-508. |
[11] | QI Chunping, WU Wenfen, WANG Chenye, LI Huiquan. Recycling and reuse of TiO2 carrier from waste SCR catalysts used in coal-fired power plants [J]. CIESC Journal, 2017, 68(11): 4239-4248. |
[12] | ZENG Wei, ZHANG Jie, JI Zhaohua, WANG Anqi, PENG Yongzhen. Shortcut nitrification-denitrification and population dynamics of nitrifying bacteria in MUCT process treating domestic wastewater [J]. CIESC Journal, 2016, 67(6): 2533-2541. |
[13] | ZHANG Jianhua, PENG Yongzhen, ZHANG Miao, SUN Yawen, WANG Shuying, WANG Cong. Start-up and steady operation of simultaneous nitrification and denitrification in SBBR treating low C/N ratio domestic wastewater [J]. CIESC Journal, 2016, 67(11): 4817-4824. |
[14] | LEI Shan, YANG Juan, YU Jian, LIU Yunyi, XU Guangwen. SCR denitration catalyst prepared from titanium-bearing blast furnace slag [J]. CIESC Journal, 2014, 65(4): 1251-1259. |
[15] | GENG Chunxiang,CHAI Qianqian,WANG Chenlong. Preparation optimization and characterization of low-temperature denitration catalyst Mn-Fe-Ce/TiO2 [J]. Chemical Industry and Engineering Progree, 2014, 33(04): 921-924. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 632
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 397
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||