CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4873-4884.DOI: 10.11949/0438-1157.20200785
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Changjin TANG1,2(),Jingfang SUN1,Lin DONG1()
Received:
2020-06-19
Revised:
2020-08-12
Online:
2020-11-05
Published:
2020-11-05
Contact:
Lin DONG
通讯作者:
董林
作者简介:
汤常金(1984—),男,博士,教授,基金资助:
CLC Number:
Changjin TANG,Jingfang SUN,Lin DONG. Recent progress on elimination of NOx from flue gas via SCR technology under ultra-low temperatures (< 150℃)[J]. CIESC Journal, 2020, 71(11): 4873-4884.
汤常金,孙敬方,董林. 超低温(< 150℃)SCR脱硝技术研究进展[J]. 化工学报, 2020, 71(11): 4873-4884.
Add to citation manager EndNote|Ris|BibTeX
脱硝工艺 | 脱硝率/% | 还原/氧化剂 | 反应温度/℃ | 催化剂 | 存在的风险 |
---|---|---|---|---|---|
低氮燃烧 | 30~60 | 无 | 无要求 | 不使用催化剂 | 无 |
SNCR | 40~70 | NH3或尿素 | 800~1250 | 不使用催化剂 | 氨逃逸 |
氧化吸收法 | 50~85 | 氧化剂,碱液 | <100 | 不使用催化剂 | 二次水、臭氧污染等;易产生白烟 |
活性焦脱硝 | 50~80 | NH3或尿素 | 130~200 | 活性焦 | 自燃隐患 |
SCR | 75~90 | NH3或尿素 | 100~500 | 使用催化剂 | 无 |
Table 1 The comparison of different technologies for industrial denitration
脱硝工艺 | 脱硝率/% | 还原/氧化剂 | 反应温度/℃ | 催化剂 | 存在的风险 |
---|---|---|---|---|---|
低氮燃烧 | 30~60 | 无 | 无要求 | 不使用催化剂 | 无 |
SNCR | 40~70 | NH3或尿素 | 800~1250 | 不使用催化剂 | 氨逃逸 |
氧化吸收法 | 50~85 | 氧化剂,碱液 | <100 | 不使用催化剂 | 二次水、臭氧污染等;易产生白烟 |
活性焦脱硝 | 50~80 | NH3或尿素 | 130~200 | 活性焦 | 自燃隐患 |
SCR | 75~90 | NH3或尿素 | 100~500 | 使用催化剂 | 无 |
行业 | 烟气组成 | 目前使用的 脱硝技术 | NOx排放限值/(mg/m3) | |||
---|---|---|---|---|---|---|
NOx/(mg/m3) | SOx/(mg/m3) | 粉尘/(mg/m3) | 其他 | |||
火电 | 100~1000 | 500~4000 | 30~100 | Hg,Pb等 | SCR | 50 |
焦化 | 200~800 | 100~500 | 50~85 | H2S等 | SCR | 150 |
钢铁 | 200~310 | 400~1500 | 30~80 | CO,二英等 | 活性焦、臭氧氧化、SCR | 50 |
水泥 | 800~1200 | 30~100 | 80000~120000 | CaO等 | SNCR | 320 |
玻璃 | 1200~3000 | 300~3300 | 300~1200 | Na盐,CaO等 | SNCR | 700 |
陶瓷 | 200~1100 | 500~3500 | 50~200 | HCl,Pb、Cd等 | SNCR | 180 |
垃圾焚烧 | 400~1000 | 200~1200 | 1000~10000 | HCl,二英等 | SNCR | 300 |
燃气锅炉 | 100~400 | 0~20 | — | H2O,CO等 | 低氮燃烧 | 200 |
Table 2 The flue gas composition, adopted denitration technique and emission limit for NOx in some typical industries
行业 | 烟气组成 | 目前使用的 脱硝技术 | NOx排放限值/(mg/m3) | |||
---|---|---|---|---|---|---|
NOx/(mg/m3) | SOx/(mg/m3) | 粉尘/(mg/m3) | 其他 | |||
火电 | 100~1000 | 500~4000 | 30~100 | Hg,Pb等 | SCR | 50 |
焦化 | 200~800 | 100~500 | 50~85 | H2S等 | SCR | 150 |
钢铁 | 200~310 | 400~1500 | 30~80 | CO,二英等 | 活性焦、臭氧氧化、SCR | 50 |
水泥 | 800~1200 | 30~100 | 80000~120000 | CaO等 | SNCR | 320 |
玻璃 | 1200~3000 | 300~3300 | 300~1200 | Na盐,CaO等 | SNCR | 700 |
陶瓷 | 200~1100 | 500~3500 | 50~200 | HCl,Pb、Cd等 | SNCR | 180 |
垃圾焚烧 | 400~1000 | 200~1200 | 1000~10000 | HCl,二英等 | SNCR | 300 |
燃气锅炉 | 100~400 | 0~20 | — | H2O,CO等 | 低氮燃烧 | 200 |
1 | Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. |
2 | Cheng Y, Zheng G, Wei C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China[J]. Science Advance, 2017, 2(12): e1601530. |
3 | 中国环境监测总站. 中国环境统计年报: 2013—2017[M]. 北京: 中国环境科学出版社, 2014—2018. |
China National Environmental Monitoring Centre. Annual Statistic Report on Environment in China: 2013—2017[M]. Beijing: China Environmental Science Press, 2014—2018. | |
4 | 江苏省环境保护厅. 关于开展全省非电行业氮氧化物深度减排的通知[Z]. 2017. |
Environmental Protection Department of Jiangsu Province. Deployment of NOx emission control from non-electric industries in Jiangsu province [Z]. 2017. | |
5 | 王修文, 李露露, 孙敬方, 等. 我国氮氧化物排放控制及脱硝催化剂研究进展[J]. 工业催化, 2019, 27(2): 1-23. |
Wang X W, Li L L, Sun J F, et al. Analysis of NOx emission and control in China and research progress in denitration catalysts[J]. Industrial Catalysis, 2019, 27(2): 1-23. | |
6 | Tang C J, Zhang H L, Dong L. Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Catalysis Science & Technology, 2016, 6(5): 1248-1264. |
7 | Yuan H, Sun N, Chen J, et al. Insight into the NH3-assisted selective catalytic reduction of NO on β-MnO2 (110): reaction mechanism, activity descriptor, and evolution from a pristine state to a steady state[J]. ACS Catalysis, 2018, 8(10): 9269-9279. |
8 | Liu C, Shi J W, Gao C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review[J]. Applied Catalysis A: General, 2016, 522: 54-69. |
9 | Kang M, Yeon T H, Park E D, et al. Novel MnOx catalysts for NO reduction at low temperature with ammonia[J]. Catalysis Letters, 2006, 106(1/2): 77-80. |
10 | Kang M, Park E D, Kim J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A: General, 2007, 327(2): 261-269. |
11 | 唐晓龙, 郝吉明, 徐文国, 等. 新型MnOx催化剂用于低温NH3选择性催化还原NOx[J]. 催化学报, 2006, 27(10): 843-848. |
Tang X L, Hao J M, Xu W G, et al. Novel MnOx catalyst for low-temperature selective catalytic reduction of NOx with NH3[J]. Chinese Journal of Catalysis, 2006, 27(10): 843-848. | |
12 | 戴韵, 李俊华, 彭悦,等. MnO2的晶相结构和表面性质对低温NH3-SCR反应的影响[J]. 物理化学学报, 2012, 28(7):1771-1776. |
Dai Y, Li J H, Peng Y, et al. Effects of MnO2 crystal structure and surface property on the NH3-SCR reaction at low temperature[J]. Acta Physico-Chimica Sinica, 2012, 28(7):1771-1776. | |
13 | Gong P J, Xie J L, Fang D, et al. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures[J]. Chinese Journal of Catalysis, 2017, 38(11): 1925-1934. |
14 | Andreoli S, Deorsola F A, Galletti C, et al. Nanostructured MnOx catalysts for low-temperature NOx SCR[J]. Chemical Engineering Journal, 2015, 278: 174-182. |
15 | 孙梦婷, 黄碧纯, 马杰文,等. 二氧化锰在低温NH3-SCR催化反应上的形貌效应[J]. 物理化学学报, 2016, 32(6):1501-1510. |
Sun M T, Huang B C, Ma J W, et al. Morphological effects of manganese dioxide on catalytic reactions for low-temperature NH3-SCR[J]. Acta Physico-Chimica Sinica, 2016, 32(6):1501-1510. | |
16 | Shi J W, Gao C, Liu C, et al. Porous MnOx for low-temperature NH3-SCR of NOx: the intrinsic relationship between surface physicochemical property and catalytic activity[J]. Journal of Nanoparticle Research, 2017, 19(6): 194. |
17 | Xu T, Wang C, Wu X, et al. Modification of MnCo2Ox catalysts by NbOx for low temperature selective catalytic reduction of NO with NH3[J]. RSC Advances, 2016, 6(99): 97004-97011. |
18 | Liu J, Wei Y, Li P Z, et al. Experimental and theoretical investigation of mesoporous MnO2 nanosheets with oxygen vacancies for high-efficiency catalytic deNOx[J]. ACS Catalysis, 2018, 8(5): 3865-3874. |
19 | Zhan S, Zhu D, Qiu M, et al. Highly efficient removal of NO with ordered mesoporous manganese oxide at low temperature[J]. RSC Advances, 2015, 5(37): 29353-29361. |
20 | Tian W, Yang H, Fan X, et al. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 105-109. |
21 | Yao X, Kong T, Yu S, et al. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature[J]. Applied Surface Science, 2017, 402: 208-217. |
22 | Kijlstra W S, Daamen J C M L, van de Graaf J M, et al. Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3[J]. Applied Catalysis B: Environmental, 1996, 7(3/4): 337-357. |
23 | Yang G, Zhao H, Luo X, et al. Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2019, 245: 743-752. |
24 | Qu L, Li C, Zeng G, et al. Support modification for improving the performance of MnOx–CeOy/γ-Al2O3 in selective catalytic reduction of NO by NH3[J]. Chemical Engineering Journal, 2014, 242: 76-85. |
25 | Zhao W, Li C, Lu P, et al. Iron, lanthanum and manganese oxides loaded on γ-Al2O3 for selective catalytic reduction of NO with NH3 at low temperature[J]. Environmental Technology, 2013, 34(1): 81-90. |
26 | Wang X, Wu S, Zou W, et al. Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis, 2016, 37(8): 1314-1323. |
27 | Smirniotis P G, Sreekanth P M, Peña D A, et al. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: a comparison for low-temperature SCR of NO with NH3[J]. Industrial & Engineering Chemistry Research, 2006, 45(19): 6436-6443. |
28 | Jiang B, Liu Y, Wu Z. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1249-1254. |
29 | Wu Z, Jiang B, Liu Y, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol–gel method[J]. Journal of Hazardous Materials, 2007, 145(3): 488-494. |
30 | 黄海凤, 张峰, 卢晗锋, 等. 制备方法对低温 NH3-SCR 脱硝催化剂MnOx/TiO2结构与性能的影响[J]. 化工学报, 2010, 61(1): 80-85. |
Huang H F, Zhang F, Lu H F, et al. Effect of preparation methods on structures and performance of MnOx/TiO2 catalyst for low-temperature NH3-SCR[J]. CIESC Journal, 2010, 61(1): 80-85. | |
31 | Li J, Chen J, Ke R, et al. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catalysis Communications, 2007, 8(12): 1896-1900. |
32 | Deng S, Meng T, Xu B, et al. Advanced MnOx/TiO2 catalyst with preferentially exposed anatase {001} facet for low-temperature SCR of NO[J]. ACS Catalysis, 2016, 6(9): 5807-5815. |
33 | Liu X, Yu Q, Chen H, et al. The promoting effect of S-doping on the NH3-SCR performance of MnOx/TiO2 catalyst[J]. Applied Surface Science, 2020, 508: 144694. |
34 | Kim Y J, Kwon H J, Nam I S, et al. High deNOx performance of Mn/TiO2 catalyst by NH3[J]. Catalysis Today, 2010, 151(3/4): 244-250. |
35 | Qi G, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Applied Catalysis B: Environmental, 2003, 44(3): 217-225. |
36 | Wu S, Yao X, Zhang L, et al. Improved low temperature NH3-SCR performance of FeMnTiOx mixed oxide with CTAB-assisted synthesis[J]. Chemical Communications, 2015, 51(16): 3470-3473. |
37 | Wu S, Zhang L, Wang X, et al. Synthesis, characterization and catalytic performance of FeMnTiOx mixed oxides catalyst prepared by a CTAB-assisted process for mid-low temperature NH3-SCR[J]. Applied Catalysis A: General, 2015, 505: 235-242. |
38 | Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst[J]. Journal of Catalysis, 2003, 217(2): 434-441. |
39 | Xu L, Li X S, Crocker M, et al. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2[J]. Journal of Molecular Catalysis A: Chemical, 2013, 378: 82-90. |
40 | Andreoli S, Deorsola F A, Pirone R. MnOx/CeO2 catalysts synthesized by solution combustion synthesis for the low-temperature NH3-SCR[J]. Catalysis Today, 2015, 253: 199-206. |
41 | Shen B, Wang F, Liu T. Homogeneous MnOx–CeO2 pellets prepared by a one-step hydrolysis process for low-temperature NH3-SCR[J]. Powder Technology, 2014, 253: 152-157. |
42 | Yao X, Ma K, Zou W, et al. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chinese Journal of Catalysis, 2017, 38(1): 146-159. |
43 | Liu C, Gao G, Shi J W, et al. MnOx-CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature[J]. Catalysis Communications, 2016, 86: 36-40. |
44 | Li S, Huang B, Yu C. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2017, 98: 47-51. |
45 | Ma Z, Sheng L, Wang X, et al. Oxide catalysts with ultra-strong resistance to SO2 deactivation for removing nitric oxide at low temperature[J]. Advanced Materials, 2019, 31(42): 1903719. |
46 | Weiman L, Haidi L, Yunfa C. Mesoporous MnOx-CeO2 composites for NH3-SCR: the effect of preparation methods and a third dopant[J]. RSC Advances, 2019, 9(21): 11912-11921. |
47 | Wei Y, Sun Y, Su W, et al. MnO2 doped CeO2 with tailored 3-D channels exhibits excellent performance for NH3-SCR of NO[J]. RSC Advances, 2015, 5(33): 26231-26235. |
48 | Gan L, Li K, Yang W, et al. Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: promoted activity and SO2 tolerance[J]. Chemical Engineering Journal, 2019, 391: 123473. |
49 | Zhang L, Zhang D, Zhang J, et al. Design of meso-TiO2@MnOx-CeOx/CNTs with a core–shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20): 9821-9829. |
50 | Ran X, Li M, Wang K, et al. Spatially confined tuning the interfacial synergistic catalysis in mesochannels toward selective catalytic reduction[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19242-19251. |
51 | Li L, Sun B, Sun J, et al. Novel MnOx-CeO2 nanosphere catalyst for low-temperature NH3-SCR[J]. Catalysis Communications, 2017, 100: 98-102. |
52 | Ma K, Zou W, Zhang L, et al. Construction of hybrid multi-shell hollow structured CeO2-MnOx materials for selective catalytic reduction of NO with NH3[J]. RSC advances, 2017, 7(10): 5989-5999. |
53 | Xiong Y, Tang C, Yao X, et al. Effect of metal ions doping (M= Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis A: General, 2015, 495: 206-216. |
54 | Zhang L, Shi L, Huang L, et al. Rational design of high-performance deNOx catalysts based on MnxCo3–xO4 nanocages derived from metal-organic frameworks[J]. ACS Catalysis, 2014, 4(6): 1753-1763. |
55 | Meng D, Zhan W, Guo Y, et al. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance[J]. ACS Catalysis, 2015, 5(10): 5973-5983. |
56 | Xu Q, Fang Z, Chen Y, et al. Titania–samarium–manganese composite oxide for the low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology, 2020, 54(4): 2530-2538. |
57 | Wang Z, Guo R, Shi X, et al. The superior performance of CoMnOx catalyst with ball-flowerlike structure for low-temperature selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2020, 381: 122753. |
58 | Liu Y, Guo R, Duan C, et al. A highly effective urchin-like MnCrOx catalyst for the selective catalytic reduction of NOx with NH3[J]. Fuel, 2020, 271: 117667. |
59 | Gao G, Shi J W, Fan Z, et al. MnM2O4 microspheres (M= Co, Cu, Ni) for selective catalytic reduction of NO with NH3: comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy[J]. Chemical Engineering Journal, 2017, 325: 91-100. |
60 | Yan L, Liu Y, Zha K, et al. Scale–activity relationship of MnOx-FeOy nanocage catalysts derived from Prussian blue analogues for low-temperature NO reduction: experimental and DFT studies[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2581-2593. |
61 | Wan Y, Zhao W, Tang Y, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B: Environmental, 2014, 148: 114-122. |
62 | Zuo J, Chen Z, Wang F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn-Zr mixed oxide catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2647-2655. |
63 | Chang H, Li J, Chen X, et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: enhancement of activity and remarkable resistance to SO2[J]. Catalysis Communications, 2012, 27: 54-57. |
64 | Inomata Y, Hata S, Mino M, et al. Bulk vanadium oxide versus conventional V2O5/TiO2: NH3-SCR catalysts working at a low temperature below 150℃[J]. ACS Catalysis, 2019, 9(10): 9327-9331. |
65 | Smirniotis P G, Peña D A, Uphade B S. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2[J]. Angewandte Chemie International Edition, 2001, 40(13): 2479-2482. |
66 | Li S, Wang X, Tan S, et al. CrO3 supported on sargassum-based activated carbon as low temperature catalysts for the selective catalytic reduction of NO with NH3[J]. Fuel, 2017, 191: 511-517. |
67 | Zhang Y, Zhang H, Zhou L, et al. DRIFT study on Cr2O3-SO42-/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Chemical Research in Chinese Universities, 2014, 30(2): 279-283. |
68 | Yu S, Xu S, Sun B, et al. Synthesis of CrOx/C catalysts for low temperature NH3-SCR with enhanced regeneration ability in the presence of SO2[J]. RSC Advances, 2018, 8(7): 3858-3868. |
69 | Zeng Z, Lu P, Li C, et al. Removal of NO by carbonaceous materials at room temperature: a review[J]. Catalysis Science & Technology, 2012, 2(11): 2188-2199. |
70 | 付亚利, 张永发, 李国强,等. 非沥青基煤质氧化活性炭的脱硝特性[J]. 环境工程学报, 2016, 7(10): 3727-3732. |
Fu Y L, Zhang Y F, Li G Q, et al. Denitrification characteristics of non-pitch coal-based oxidized activated carbon[J]. Chinese Journal of Environmental Engineering, 2016, 7(10): 3727-3732. | |
71 | Guo Q, Jing W, Hou Y, et al. On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures[J]. Chemical Engineering Journal, 2015, 270: 41-49. |
72 | Adapa S, Gaur V, Verma N. Catalytic oxidation of NO by activated carbon fiber (ACF)[J]. Chemical Engineering Journal, 2006, 116(1): 25-37. |
73 | Yu S, Jiang N, Zou W, et al. A general and inherent strategy to improve the water tolerance of low temperature NH3-SCR catalysts via trace SiO2 deposition[J]. Catalysis Communications, 2016, 84: 75-79. |
74 | Wang H, Huang B, Yu C, et al. Research progress, challenges and perspectives on the sulfur and water resistance of catalysts for low temperature selective catalytic reduction of NOx by NH3[J]. Applied Catalysis A: General, 2019, 588: 117207. |
75 | Gao C, Shi J W, Fan Z, et al. Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NOx: a review[J]. Catalysts, 2018, 8(1): 11. |
76 | Jin R, Liu Y, Wang Y, et al. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Applied Catalysis B: Environmental, 2014, 148: 582-588. |
77 | Liu H, Fan Z, Sun C, et al. Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3[J]. Applied Catalysis B: Environmental, 2019, 244: 671-683. |
78 | Sun C, Liu H, Chen W, et al. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction[J]. Chemical Engineering Journal, 2018, 347: 27-40. |
79 | Wang X, Lan Z, Liu Y, et al. Facile fabrication of hollow tubular mixed oxides for selective catalytic reduction of NOx at low temperature: a combined experimental and theoretical study[J]. Chemical Communications, 2017, 53(5): 967-970. |
80 | Li H, Zhang D, Maitarad P, et al. In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3[J]. Chemical Communications, 2012, 48(86): 10645-10647. |
81 | Wang X, Du X, Liu S, et al. Understanding the deposition and reaction mechanism of ammonium bisulfate on a vanadia SCR catalyst: a combined DFT and experimental study[J]. Applied Catalysis B: Environmental, 2020, 260: 118168. |
82 | Chen Y, Li C, Chen J, et al. Self-prevention of well-defined-facet Fe2O3/MoO3 against deposition of ammonium bisulfate in low-temperature NH3-SCR[J]. Environmental Science & Technology, 2018, 52(20): 11796-11802. |
83 | Ma Z, Sheng L, Wang X, et al. Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temperature [J]. Advanced Materials, 2020, 32(6): 1907806. |
84 | Yu J, Guo F, Wang Y, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3 [J]. Applied Catalysis B: Environmental, 2010, 95(1/2): 160-168 |
85 | Guo K, Fan G, Gu D, et al. Pore size expansion accelerates ammonium bisulfate decomposition for improved sulfur resistance in low-temperature NH3-SCR[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 4900-4907. |
86 | Ma K, Guo K, Li L, et al. Cavity size dependent SO2 resistance for NH3-SCR of hollow structured CeO2-TiO2 catalysts[J]. Catalysis Communications, 2019, 128: 105719. |
87 | Fan Z, Shi J W, Niu C, et al. The insight into the role of Al2O3 in promoting the SO2 tolerance of MnOx for low-temperature selective catalytic reduction of NOx with NH3[J]. Chemical Engineering Journal, 2020, 398: 125572. |
88 | Huang Z, Gu X, Wen W, et al. A “smart” hollandite deNOx catalyst: self-protection against alkali poisoning[J]. Angewandte Chemie International Edition, 2013, 52(2): 660-664. |
89 | Li C, Huang Z, Liu X, et al. Rational design of alkali-resistant catalysts for selective NO reduction with NH3[J]. Chemical Communications, 2019, 55(66): 9853-9856. |
90 | Liu X, Gao J, Chen Y, et al. Rational design of alkali-resistant NO reduction catalysts using a stable hexagonal V-doped MoO3 support for alkali trapping[J]. ChemCatChem, 2018, 10(18): 3999-4003. |
91 | Zheng L, Zhou M, Huang Z, et al. Self-protection mechanism of hexagonal WO3-based deNOx catalysts against alkali poisoning[J]. Environmental Science & Technology, 2016, 50(21): 11951-11956. |
92 | Hao Z, Shen Z, Li Y, et al. The role of alkali metal in α-MnO2 catalyzed ammonia-selective catalysis[J]. Angewandte Chemie International Edition, 2019, 58(19): 6351-6356. |
93 | Ciardelli C, Nova I, Tronconi E, et al. A “Nitrate Route” for the low temperature “Fast SCR” reaction over a V2O5-WO3/TiO2 commercial catalyst[J]. Chemical Communications, 2004, (23): 2718-2719. |
94 | Chen Z, Si Z, Cao L, et al. Decomposition behavior of ammonium nitrate on ceria catalysts and its role in the NH3-SCR reaction[J]. Catalysis Science & Technology, 2017, 7(12): 2531-2541. |
95 | van der Grift C J G, Woldhuis A F, Maaskant O L. The shell DENOX system for low temperature NOx removal[J]. Catalysis Today, 1996, 27(1/2): 23-27. |
96 | 张霄玲, 鲍佳宁, 余剑, 等. 工业MnOx颗粒催化剂的制备及其低温脱硝应用研究[J]. 化工学报, 2020, 71(11): 5169-5177. |
Zhang X L, Bao J N, Yu J, et al. The preparation and industrial application of MnOx particle catalyst for low temperature denitration[J]. CIESC Journal, 2020,71(11): 5169-5177. | |
97 | 曾红, 刘平乐, 张喻升,等. 表面涂覆型低温脱硝催化剂的开发与中试应用[J]. 过程工程学报, 2017, 17(6): 1208-1216. |
Zeng H, Liu P L, Zhang Y S, et al. Development and pilot test of surface-coating SCR de-nitration catalyst at low temperature[J]. The Chinese Journal of Process Engineering, 2017, 17(6): 1208-1216. | |
98 | 皇甫林, 李长明, 王超, 等. 硅系黏结剂对涂覆型蜂窝体催化剂性能的影响[J]. 过程工程学报, 2020, 20(4): 484-492. |
Huangfu L, Li C M, Wang C, et al. Effect of silicon-based binder on the performance of coated honeycomb catalyst[J]. The Chinese Journal of Process Engineering, 2020, 20(4): 484-492. | |
99 | 赵勇刚, 董林, 李奇隽, 等. 低温脱硝催化剂在火电厂锅炉启动期间的中试应用[J]. 工业催化, 2018, 26(4): 64-71. |
Zhao Y G, Dong L, Li Q J, et al. Pilot-scale application of low temperature deNOx catalyst for start-up of boiler in thermal power plant[J]. Industrial Catalysis, 2018, 26(4): 64-71. | |
100 | 王成志, 曹鹏, 颜鑫, 等. 中试规模下蜂窝式Mn-Ce/Al2O3脱硝催化剂的低温性能[J]. 环境工程学报, 2018, 12(4):75-84. |
Wang C Z, Cao P, Yan X, et al. Low temperature performance of honeycomb Mn-Ce/Al2O3 de-nitration catalyst in pilot-scale[J]. Chinese Journal of Environmental Engineering, 2018, 12(4):75-84. | |
101 | 唐志雄, 曾环木, 陈雄波, 等. 燃煤烟气低温SCR脱硝中试研究[J]. 环境工程学报, 2014, 8(3): 1120-1124. |
Tang Z X, Zeng H M, Chen X B, et al. Pilot-scale study of selective catalytic reduction of NOx at low temperature[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1120-1124. | |
102 | Wang C, Yu F, Zhu M, et al. Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50-150℃[J]. Chemical Engineering Journal, 2018, 34: 182-192. |
103 | 科技部网站新闻稿. 国家863计划 “固定源烟气处理稀土催化材料的应用与开发” 课题在新疆石河子通过验收[EB/OL]. . |
News release from website of Ministry of Science and Technology. The National 863 Program “Application and development of rare earth catalytic materials for flue gas treatment from stationary sources” was accepted in Shihezi, Xinjiang [EB/OL]. . |
[1] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[2] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[3] | Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery [J]. CIESC Journal, 2023, 74(4): 1735-1745. |
[4] | Shaozhuang WANG, Dunxi YU, Jiayi LI, Jingkun HAN, Xin YU, Fangqi LIU. Effects of torrefaction with flue gas on grindability of corn stalk [J]. CIESC Journal, 2023, 74(2): 861-870. |
[5] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[6] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[7] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[8] | Chao JI, Wei LIU, Hong QI. Flue gas dehumidification through air cooling enhanced by hydrophobic ceramic membranes [J]. CIESC Journal, 2022, 73(5): 2174-2182. |
[9] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[10] | Xue LI, Ming DONG, Huang ZHANG, Jun XIE. Kinetic characteristics of micro-particle impact on a flat surface under humidity conditions [J]. CIESC Journal, 2022, 73(5): 1940-1946. |
[11] | Xuan LIU, Yinjiao SU, Yang TENG, Kai ZHANG, Pengcheng WANG, Lifeng LI, Zhen LI. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash [J]. CIESC Journal, 2022, 73(2): 923-932. |
[12] | Haolong BAI, Liangliang FU, Guangwen XU, Dingrong BAI. Characteristics of gaseous nitrogen release in coal fluidized bed combustion under different atmospheres [J]. CIESC Journal, 2022, 73(2): 876-886. |
[13] | Xu ZHAO, Changsheng BU, Xinye WANG, Xin ZHANG, Xiaolei CHENG, Naiji WANG, Guilin PIAO. Kinetics investigation on iron-based oxygen carrier aided oxy-fuel combustion of anthracite char [J]. CIESC Journal, 2022, 73(1): 384-392. |
[14] | MA Zhibin, ZHANG Sen, SHAN Xueyuan, GUO Yanxia, CHENG Fangqin. Migration of lithium, gallium and rare earth elements in coal, coal slime, and coal gangue during combustion [J]. CIESC Journal, 2021, 72(6): 3349-3358. |
[15] | QIU Shuang, XIAO Yonghou, LIU Jianhui, HE Gaohong. Enhanced NH3-SCR performance over Cu-SAPO-34 prepared by one-step synthesis: effect of Si contents [J]. CIESC Journal, 2021, 72(5): 2578-2585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||