[1] |
PACYNA E G, PACYNA J M, SUNDSETH K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010, 44(20):2487-2499.
|
[2] |
袁媛, 张军营, 李小龙, 等. TiO2-V2O5纳米纤维光催化氧化烟气中的Hg0[J]. 化工学报, 2012, 63(S2):69-75. YUAN Y, ZHANG J Y, LI X L, et al. Photocatalytic oxidation of Hg0 in flue gas using TiO2-V2O5nanofibers[J]. CIESC Journal, 2012, 63(S2):69-75.
|
[3] |
杜雯, 殷立宝, 禚玉群, 等. 100 MW燃煤电厂非碳基吸附剂喷射脱汞实验研究[J]. 化工学报, 2014, 65(11):4413-4419. DU W, YIN L B, ZHUO Y Q, et al. Experimental study on mercury capture using non-carbon sorbents in 100 MW coal-fired power plant[J]. CIESC Journal, 2014, 65(11):4413-4419.
|
[4] |
张君, 李志超, 段钰锋, 等. 燃煤电厂汞迁移排放及脱除[J]. 燃烧科学与技术, 2015, 21(5):415-420. ZHANG J, LI Z C, DUAN Y F, et al. Migrate emission and removal of mercury in coal-fired power plant[J]. Journal of Combustion Science and Technology, 2015, 21(5):415-420.
|
[5] |
乔少华, 晏乃强, 陈杰, 等. MnOx/a-Al2O3催化氧化燃煤烟气中Hg0的试验研究[J]. 中国环境科学, 2009, 29(3):237-241. QIAO S H, YAN N Q, CHEN J, et al. Catalytic oxidation of elemental mercury in flue gas on MnOx/α-Al2O3[J]. China Environmental Science, 2009, 29(3):237-241.
|
[6] |
ZHAN F, LI C, ZENG G, et al. Experimental study on oxidation of elemental mercury by UV/Fenton system[J]. Chemical Engineering Journal, 2013, 232(9):81-88.
|
[7] |
LIU Y X, ZHANG J, SHENG C D, et al. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chemical Engineering Journal, 2010, 162(3):1006-1011.
|
[8] |
ZHAO Y, HAO R L, ZHANG P, et al. An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8[J]. Fuel, 2014, 136(10):113-121.
|
[9] |
HUTSON N D, KRZYZYNSKA R, SRIVASTAVA R K. Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber[J]. Industrial and Engineering Chemistry Research, 2008, 47(16):5825-5831.
|
[10] |
WANG H Q, ZHOU S Y, XIAO L, et al. Titania nanotubes-a unique photocatalyst and adsorbent for elemental mercury removal[J]. Catalyst Today, 2011, 175:202-208.
|
[11] |
LI Y, WU C Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite[J]. Environmental Science and Technology, 2006, 40:6444-6448.
|
[12] |
WU J, LI C E, ZHAO X Y, et al. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2[J]. Applied Catalysis B:Environmental, 2015, 176/177:559-569.
|
[13] |
YUAN Y, ZHANG J Y, LI H L, et al. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chemical Engineering Journal, 2012, 192(2):21-28.
|
[14] |
CHEN Z Y, MANNAVA D P, MATHUR V K. Mercury oxidization in dielectric barrier discharge plasma system[J]. Industrial and Engineering Chemistry Research, 2006, 45(17):6050-6055.
|
[15] |
BI Y P, OUYANG S X, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 113:6490-6492.
|
[16] |
TANG Y, SUBRAMANIAM V P, LAU T H, et al. In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution[J]. Applied Catalysis B:Environmental, 2011, 106(3/4):577-585.
|
[17] |
YAO X X, LIU X H, ZHU D, et al. Synthesis of cube-like Ag/AgCl plasmonic photocatalyst with enhanced visible light photocatalytic activity[J]. Catalysis Communications, 2015, 59:151-155.
|
[18] |
HU C, GUO J, QU J H, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation[J]. Langmuir, 2007, 23(9):4982-4987.
|
[19] |
DONG R F, TIAN B Z, ZHANG J L, et al. AgBr@Ag/TiO2 core-shell composite with excellent visible light photocatalytic activity and hydrothermal stability[J]. Catalysis Communications, 2013, 38(15):16-20.
|
[20] |
LI G T, WONG K H, ZHANG X W, et al. Degradation of acid orange 7 using magnetic AgBr under visible light:the roles of oxidizing species[J]. Chemosphere, 2009, 76(9):1185-1191.
|
[21] |
崔玉民, 李慧泉. 铋基光催化材料[M]. 北京:化学工业出版社, 2015:64-75. CUI Y M, LI H Q. Bismuth-based Photocatalytic Material[M]. Beijing:Chemical Industry Press, 2015:64-75.
|
[22] |
ZHANG A C, XING W B, ZHANG D. A novel low-cost method for Hg0 removal from flue gas by visible-light-driven BiOX (X=Cl, Br, I) photocatalysts[J]. Catalysis Communications, 2016, 87:57-61.
|
[23] |
AO Y H, TANG H, WANG P F, et al. Deposition of Ag@AgCl onto two dimensional square-like BiOCl nanoplates for high visible-light photocatalytic activity[J]. Materials Letters, 2014, 131:74-77.
|
[24] |
HUANG D Q, MA J F, YU L M, et al. AgCl and BiOCl composited with NiFe-LDH for enhanced photo-degradation of Rhodamine B[J]. Separation and Purification Technology, 2015, 156:789-794.
|
[25] |
ZHANG A C, ZHANG L X, CHEN X Z, et al. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light[J]. Applied Surface Science, 2016, 392:1107-1116.
|
[26] |
沈伯雄, 蔡记, 陈建宏, 等. KBr和KI改性黏土脱除模拟烟气中的单质汞[J]. 化工学报, 2014, 65(2):711-717. SHEN B X, CAI J, CHEN J X, et al. Removal of element mercury from simulated flue gas by clay modified with KBr and KI[J]. CIESC Journal, 2014, 65(2):711-717.
|
[27] |
LIU Y X, ZHANG J, PAN J F, et al. Investigation on removal of NO from SO2-containing simulated flue gas by UV/Fenton-like reaction[J]. Energy Fuels, 2012, 26(9):5430-5436.
|
[28] |
ZHANG A C, ZHANG L X, ZHU Q F, et al. Photocatalytic oxidation removal of Hg0 by ternary Ag@AgCl/Ag2CO3 hybrid under fluorescent light[J]. Fuel Processing Technology, 2017, 159:222-231.
|
[29] |
XIONG W, ZHAO Q, LI X, et al. One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity[J]. Catalysis Communications, 2011, 16(1):229-233.
|
[30] |
HAN L, WANG P, ZHU C, et al. Facile solvothermal synthesis of cube-like Ag@AgCl:a highly efficient visible light photocatalyst[J]. Nanoscale, 2011, 3(7):2931-2935.
|
[31] |
SUN M, WANG Y, SHAO Y, et al. Fabrication of a novel Z-scheme g-C3N4/Bi4O7 heterojunction photocatalyst with enhanced visible light-driven activity toward organic pollutants[J]. Journal of Colloid and Interface Science, 2017, 501:123-132.
|
[32] |
LI C W, ZHANG A C, ZHANG L X, et al. Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe2O4 composites for Hg0 removal under fluorescent light irradiation[J]. Applied Surface Science, 2018, 433:914-926.
|
[33] |
CAO T T, LI, Z, XIONG Y, et al. Silica-silver nanocomposites as regenerable sorbents for Hg0 removal from flue gases[J]. Environmental Science and Technology, 2017, 51:11909-11917.
|
[34] |
WANG P Y, HU S, XIANG J, et al. Analysis of mercury species over CuO-MnO2-Fe2O3/g-Al2O3 catalysts by thermal desorption[J]. Proceedings of the Combustion Institute, 2015, 35:2847-2853.
|
[35] |
LIANG Y H, LIN S L, HU J S, et al. Facile hydrothermal synthesis of nanocomposite Ag@AgCl/K2Ti4O9 and photocatalytic degradation under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical, 2014, 383/384:231-238.
|