[1] |
胡俊刚, 胡雪梅. 城镇污水处理厂运营现状及自动化控制的应用[J]. 武汉理工大学学报, 2002, 11(24):66-69. HU R G, HU X M. Management and automatically control in water treatment[J]. Journal of Wuhan University of Technology, 2002, 11(24):66-69.
|
[2] |
DE LA FUENTE M J, VEGA P. A Neural networks based approach for fault detection and diagnosis:application to a real process[C]//Proceedings of the 4th IEEE Conference on Control Applications (CCA 1995). 1995:188-193.
|
[3] |
施汉昌, 王玉珏. 污水处理厂故障诊断专家系统[J]. 给水排水, 2001, 27(8):88-90. SHI H C, WANG Y J. Diagnostic expert system for WTTP[J]. Water & Water Engineering, 2001, 27(8):88-90.
|
[4] |
陆林花. 聚类算法及其在污水处理工艺故障诊断中的应用研究[D]. 重庆:重庆大学, 2007. LU L H. Research on clustering algorithms and its application of the fault diagnosis of wastewater treatment process[D]. Chongqing:Chongqing University, 2007.
|
[5] |
范昕炜, 杜树新, 吴铁军. 粗SVM分类方法及其在污水处理过程中的应用[J]. 控制与决策, 2004, 19(5):573-576. FAN X W, DU S X, WU T J. Rough support vector machine and its application to wastewater treatment processes[J]. Control and Decision. 2004, 19(5):573-576.
|
[6] |
钱云. 非均衡数据分类算法若干应用研究[D]. 长春:吉林大学, 2014. QIAN Y. Research on application of classification algorithms for imbalanced data[D]. Changchun:Jilin University, 2014.
|
[7] |
LEE H J, AHN B S, PARK Y M. A fault diagnosis expert system for distribution substations[J]. IEEE Trans. on Power Delivery, 2000, 15(1):92-97.
|
[8] |
刘成忠, 韩俊英. 基于邻域粗糙集的支持向量机在污水处理故障诊断中的应用[J]. 甘肃农业大学学报, 2013, 48(3):176-180. LIU C Z, HAN J Y. Application of support vector machine based on neighborhood rough set to sewage treatment fault diagnoses[J]. Journal of Gansu Agricultural University, 2013, 48(3):176-180.
|
[9] |
TIPPING M E. The relevance vector machine[J]. Advances in Neural Information Processing Systems, 1999, 12(3):652-658.
|
[10] |
TIPPING M E, FAUL A C. Fast marginal likelihood maximization for sparse bayesian models[C]//Proc. 9th International Workshop on Artificial Intelligence and Statistics. Key West, 2003:3-6.
|
[11] |
GALAR M, FERNANDEZ A, BARRENECHEA E, et al. An over view of ensemble methods for binary classifiers in multi-class problems:experimental study on one-vs-one and one-vs-all schemes[J]. Pattern Recognit, 2011, 44(8):1761-1776.
|
[12] |
HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans. Neural Netw., 2002, 3(2):415-425.
|
[13] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of 2004 IEEE International Joint Conference on Neural Networks. 2004:985-990.
|
[14] |
HUANG G B, CHEN L. Convex incremental extreme learning machine[J]. Neurocomputing, 2007, 70(16/17/18):3056-3062.
|
[15] |
HUANG G B, WANG D H, LAN Y. Extreme learning machines:a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2):107-122.
|
[16] |
许继平, 陈晨, 刘载文, 等. 基于软测量理论的BOD在线检测仪研究[J]. 控制工程, 2010, 17(s1):90-92. XU J P, CHEN C, LIU Z W, et al. Research on BOD online detection instrument based on the theory of soft instrument[J]. Control Engineering of China, 2010, 17(s1):90-92.
|
[17] |
BUCHGRABER T, SHUTIN D, POOR H V. A sliding-window online fast variable sparse Bayesian learning algorithm[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2011, 45(1):2128-2131.
|