[1] |
李东波, 蒋继穆. 国内外锌冶炼技术现状和发展趋势[J]. 中国金属通报, 2015, (6):41-44. LI D B, JIANG J M. Present situation and development trend of zinc smelting technology at home and abroad[J]. China Metal Bulletin, 2015, (6):41-44.
|
[2] |
XIE Y F, XIE S W, LI Y G, et al. Dynamic modeling and optimal control of goethite process based on the rate-controlling step[J]. Control Engineering Practice, 2017, 58:54-65.
|
[3] |
陈宁, 范勇, 桂卫华, 等. 针铁矿法沉铁过程的混杂建模与控制[J]. 中国有色金属学报, 201, 24(1):254-261. CHEN N, FAN Y, GUI W H, et al. Hybrid modeling and control of iron precipitation by goethite process[J]. Chinese Journal of Nonferrous Metals, 2014, 24(1):254-261.
|
[4] |
SOLANA-GUTIÉRREZ J, RINCÓN G, ALONSO C, et al. Using fuzzy cognitive maps for predicting river management responses:a case study of the Esla River basin, Spain[J]. Ecological Modelling, 2017, 360:260-269.
|
[5] |
MARCHAL P C, GARCÍA J G, ORTEGA J G. Application of fuzzy cognitive maps and run-to-run control to a decision support system for global set-point determination[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 47(8):2256-2267.
|
[6] |
MOURHIR A, PAPAGEORGIOU E, KOKKINOS K, et al. Exploring precision farming scenarios using fuzzy cognitive maps[J]. Sustainability, 2017, 9(7):1241.
|
[7] |
ANNINOU P A, GROUMPOS P P. Modeling of Parkinson's disease using fuzzy cognitive maps and non-linear Hebbian learning[J]. International Journal on Artificial Intelligence Tools, 2014, 23(5):1450010.
|
[8] |
FATAHI S, MORADI H. A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments[J]. Computers in Human Behavior, 2016, 63:272-281.
|
[9] |
OBIEDAT M, SAMARASINGHE S. A novel semi-quantitative fuzzy cognitive map model for complex systems for addressing challenging participatory real life problems[J]. Applied Soft Computing, 2016, 48:91-110.
|
[10] |
ZHANG J Y, LIU Z Q, ZHOU S. Dynamic domination in fuzzy causal networks[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(1):42-57.
|
[11] |
LIU Z Q, ZHANG J Y. Interrogating the structure of fuzzy cognitive maps[J]. Soft Computing, 2003, 7(3):148-153.
|
[12] |
KOTTAS T L, BOUTALIS Y S, CHRISTODOULOU M A. Fuzzy Cognitive Network:a General Framework[M]. IOS Press, 2007:183-196.
|
[13] |
KOTTAS T, STIMONIARIS D, TSIAMITROS D, et al. New operation scheme and control of smart grids using fuzzy cognitive networks[C]//PowerTech, 2015 IEEE Eindhoven. IEEE, 2015:1-5.
|
[14] |
KHEIRANDISH A, MOTLAGH F, SHAFIABADY N, et al. Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system[J]. Applied Energy, 2017, 202:20-31.
|
[15] |
KOTTAS T L, BOUTALIS Y S, CHRISTODOULOU M A. Fuzzy cognitive networks:adaptive network estimation and control paradigms[M]//Fuzzy Cognitive Maps. Heidelberg, Berlin:Springer, 2010:89-134.
|
[16] |
邓聚龙. 灰色系统:社会·经济[M]. 北京:国防工业出版社, 1985:36-105. DENG J L. Gray System:Society·Economy[M]. Beijing:National Defense Industry Press, 1985:36-105.
|
[17] |
KAYACAN E, ULUTAS B, KAYNAK O. Grey system theory-based models in time series prediction[J]. Expert Systems with Applications, 2010, 37(2):1784-1789.
|
[18] |
YIN M S. Review:fifteen years of grey system theory research:a historical review and bibliometric analysis[J]. Expert Systems with Applications, 2013, 40(7):2767-2775.
|
[19] |
吉培荣. 无偏灰色预测模型[J]. 系统工程与电子技术, 2000, 22(6):78-80. JI P R. Unbiased gray prediction model[J]. Journal of Systems Engineering and Electronics, 2000, 22(6):78-80.
|
[20] |
吉培荣. 灰色预测模型特性的研究[J]. 系统工程理论与实践, 2001, 9:105-108. JI P R. Research on the characteristics of gray prediction model[J]. System Engineering-Theory & Practice, 2001, 9:105-108.
|
[21] |
MA X, LIU Z. Application of a novel time-delayed polynomial grey model to predict the natural gas consumption in China[J]. Journal of Computational & Applied Mathematics, 2017, 324:17-24
|
[22] |
DING S, DANG Y G, LI X M, et al. Forecasting Chinese CO2, emissions from fuel combustion using a novel grey multivariable model[J]. Journal of Cleaner Production, 2017, 162:1527-1538.
|
[23] |
LINDSAY G W, RIGOTTI M, WARDEN M R, et al. Hebbian learning in a random network captures selectivity properties of prefrontal cortex[J]. Journal of Neuroscience, 2017, 37(45):11021-11036.
|
[24] |
BORN J, GALEAZZI J M, STRINGER S M. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system[J]. Plos One, 2017, 12(5):e0178304.
|
[25] |
ZENKE F, GERSTNER W, GANGULI S. The temporal paradox of Hebbian learning and homeostatic plasticity.[J]. Current Opinion in Neurobiology, 2017, 43:166-176.
|
[26] |
PAPAGEORGIOU E I, STYLIOS C D, GROUMPOS P P. Active Hebbian learning algorithm to train fuzzy cognitive maps[J]. International Journal of Approximate Reasoning, 2004, 37(3):219-249.
|
[27] |
PAPAKOSTAS G A, POLYDOROS A S, KOULOURIOTIS D E, et al. Training fuzzy cognitive maps by using Hebbian learning algorithms:a comparative study[C]//IEEE International Conference on Fuzzy Systems. IEEE, 2011:851-858.
|
[28] |
WU K, LIU J. Robust learning of large-scale fuzzy cognitive maps via the lasso from noisy time series[J]. Knowledge-Based Systems, 2016, 13:23-38.
|
[29] |
NATARAJAN R, SUBRAMANIAN J, PAPAGEORGIOU E I. Hybrid learning of fuzzy cognitive maps for sugarcane yield classification[J]. Computers and Electronics in Agriculture, 2016, 127:147-157.
|
[30] |
BAYKASOGLU A, DURMUSOGLU Z D U, KAPLANOGLU V. Training fuzzy cognitive maps via extended great deluge algorithm with applications[J]. Computers in Industry, 2011, 62(2):187-195.
|