[1] |
SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310.
|
[2] |
HAMILTON R, BRAUN B, DARE R, et al. Control issues and challenges in wastewater treatment plants[J]. IEEE Control Systems, 2006, 26(4):63-69.
|
[3] |
PIOTROWSKI R, BRDYS M A, KONARCZAK K, et al. Hierarchical dissolved oxygen control for activated sludge processes[J]. Control Engineering Practice, 2008, 16(1):114-131.
|
[4] |
CARLSSON B, REHNSTROM A. Control of an activated sludge process with nitrogen removal-a benchmark study[J]. Water Science and Technology, 2002, 45(4/5):135-142.
|
[5] |
CHACHUAT B, ROCHE N, LATIFI M A. Optimal aeration control of industrial alternating activated sludge plants[J]. Biochemical Engineering Journal, 2005, 23(3):277-289.
|
[6] |
ÅMAND L, OLSSON G, CARLSSON B. Aeration control-a review[J]. Water Science and Technology, 2013, 67(11):2374-2398.
|
[7] |
YOO C K, LEE J M, LEE I B. Nonlinear model-based dissolved oxygen control in a biological wastewater treatment process[J]. Korean Journal of Chemical Engineering, 2004, 21(1):14-19.
|
[8] |
WAHAB N A, KATEBI R, BALDERUD J. Multivariable PID control design for activated sludge process with nitrification and denitrification[J]. Biochemical Engineering Journal, 2009, 45(3):239-248.
|
[9] |
SONG X, ZHAO Y, SONG Z, et al. Dissolved oxygen control in wastewater treatment based on robust PID controller[J]. International Journal of Modelling, Identification and Control, 2012, 15(4):297-303.
|
[10] |
HOLENDA B, DOMOKOS E, REDEY A, et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control[J]. Computers & Chemical Engineering, 2008, 32(6):1270-1278.
|
[11] |
FERRER J, RODRIGO M A, SECO A, et al. Energy saving in the aeration process by fuzzy logic control[J]. Water Science and Technology, 1998, 38(3):209-217.
|
[12] |
SYU M J, CHEN B C. Back-propagation neural network adaptive control of a continuous wastewater treatment process[J]. Industrial Engineering Chemistry Research, 1998,37(9):3625-3630.
|
[13] |
SHEN W, CHEN X, PONS M N, et al. Model predictive control for wastewater treatment process with feedforward compensation[J]. Chemical Engineering Journal, 2009, 155(1/2):161-174.
|
[14] |
HAN H G, QIAO J F, CHEN Q L. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network[J]. Control Engineering Practice, 2012, 20(4):465-476.
|
[15] |
JEPPSSON U, ROSEN C, ALEX J, et al. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs[J]. Water Science and Technology, 2006, 53(1):287-295.
|
[16] |
BARBU M, VILANOVA R, SANTIN I. Fuzzy control applied on a benchmark simulation model for sewer networks[C]//System Theory, Control and Computing (ICSTCC), 201620th International Conference on IEEE, 2016:180-185.
|
[17] |
SANTIN I, PEDRET C, VILANOVA R, et al. Advanced decision control system for effluent violations removalin wastewater treatment plants[J]. Control Engineering Practice, 2016, 49:60-75.
|
[18] |
LIN Y Y, CHANG J Y, LIN C T. A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1):447-459.
|
[19] |
LIN Y Y, LIAO S H, CHANG J Y, et al. Simplified interval type-2 fuzzy neural networks[J]. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(5):959-969.
|
[20] |
MENDEL J M, WU D. Computing with words for hierarchical and distributed decision-making[J]. Computational Intelligence in Complex Decision Systems, 2010. DOI:10.2991/978-94-91216-29-9-9.
|
[21] |
JUANG C F, CHEN W Y, LIANG C W. Speed up of learning in interval type-2 neural fuzzy systems through graphic processing units[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4):1286-1298.
|
[22] |
DENG Z, CHOI K S, CAO L, et al. T2fela:type-2 fuzzy extreme learning algorithm for fast training of interval type-2 TSK fuzzy logic system[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4):664-676.
|
[23] |
OTTERPOHL R, FREUND M. Dynamic models for clarifiers of activated sludge plants with dry and wet weather flows[J]. Water Science and Technology, 1992, 26(5/6):1391-1400.
|
[24] |
OTTERPOHL R, RAAK M, ROLFS T. A mathematical model for the efficiency of the primary clarification[C]//IAWQ 17th Biennial International Conference, 1994:24-29.
|
[25] |
HENZE M, GRADY JR C P L, GUJER W, et al. Activated Sludge Model No. 1:IAWPRC Scientific and Technical Report No. 1[M]. London:IAWPRC, 1987.
|
[26] |
TAKÁCS I, PATRY G G, NOLASCO D. A dynamic model of the clarification-thickening process[J]. Water Research, 1991, 25(10):1263-1271.
|
[27] |
BATSTONE D J, KELLER J, ANGELIDAKI I, et al. The IWA anaerobic digestion model no. 1(ADM1)[J]. Water Sci. Technol., 2002, 45(10):65-73.
|
[28] |
ABIYEV R H, KAYNAK O. Type 2 fuzzy neural structure for identification and control of time-varying plants[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12):4147-4159.
|
[29] |
WANG C H, CHENG C S, LEE T T. Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN)[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2004, 34(3):1462-1477.
|
[30] |
NOPENS I, BENEDETTI L, JEPPSSON U, et al. Benchmark simulation model no 2:finalisation of plant layout and default control strategy[J]. Water Science and Technology, 2010, 62(9):1967-1974.
|
[31] |
CARP D, BARBU M. Evaluation of control techniques applied on a wastewater treatment process with activated sludge[J]. Environmental Engineering and Management Journal, 2014, 13(8):1979-1985.
|