[1] |
KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2010, 14(3):955-970.
|
[2] |
TAMME R, BAUER T, BUSCHLE J, et al. Latent heat storage above 120℃ for applications in the industrial process heat sector and solar power generation[J]. International Journal of Energy Research, 2008, 32(3):264-271.
|
[3] |
KINGA P, KRZYSZTOF P. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65(10):67-123.
|
[4] |
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renew. Sustain. Energy Rev., 2009, 13(2):318-345.
|
[5] |
HERRMANN U, KEARNEY D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(1):145-152.
|
[6] |
LIU Y S, YANG Y. Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material[J]. Solar Energy Materials & Solar Cells, 2017, 160:18-25.
|
[7] |
RATHOD M K, BANERJEE J. Thermal stability of phase change materials used in latent heat energy storage systems:a review[J]. Renewable and Sustainable Energy Reviews, 2013, 18(2):246-258.
|
[8] |
SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2015, 133(2):216-226.
|
[9] |
熊亚选, 栗博, 吴玉庭,等. 添加纳米SiO2对四元溴化盐相变热物性的影响[J]. 化工学报, 2017, 68(4):1299-1305. XIONG Y X, LI B, WU Y T, et al. Effects of nano-SiO2 addition on the thermal properties of quaternary bromide salts[J]. CIESC Journal, 2017, 68(4):1299-1305.
|
[10] |
WU Y T, LI Y, REN N, et al. Improving the thermal properties of NaNO3-KNO3 for concentrating solar power by adding additives[J]. Solar Energy Materials & Solar Cells, 2017, 160:263-268.
|
[11] |
CHOI S, EASTMAN J. Enhancing thermal conductivity of fluids with nanoparticles[J]. Dev. Appl. Newt. Flows, ASME, 1995, 23(1):99-105.
|
[12] |
CHIERUZZI M, MILIOZZI A, CRESCENZI, et al. A new phase change material based on potassium nitrate with silica and alumina nanoparticles for thermal energy storage[J]. Nanoscale Research Letters, 2015, 10(1):984.
|
[13] |
SHIN D, BANERJEE D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat & Mass Transfer, 2015, 84:898-902.
|
[14] |
SHIN D, BANERJEE D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International Journal of Heat & Mass Transfer, 2014, 74(5):210-214.
|
[15] |
MING X H, PAN C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2014, 70(3):174-184.
|
[16] |
ZHANG L D, CHEN X, WU Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials & Solar Cells, 2016, 157:808-813.
|
[17] |
JR P D M, ALAM T E, KAMAL R, et al. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer[J]. Applied Energy, 2016, 165:225-233.
|
[18] |
TIZNOBAIK H, BANERJEE D, SHIN D. Effect of formation of "long range" secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2015, 91:342-346.
|
[19] |
CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials & Solar Cells, 2017, 167:60-69.
|
[20] |
TAKAHASHI Y, SAKAMOTO R, KAMIMOTO M. Heat capacities and latent heats of LNO3, NaNO3, and KNO3[J]. International Journal of Thermophysics, 1988, 9(6):1081-1090.
|
[21] |
ROGERS D J, JANZ G J. Melting-crystallization and pre-melting properties of NaNO3-KNO3[J]. J. Chem. Eng. Data, 1982, 27(4):424-428.
|
[22] |
DANCY E A, NGUYEN-DUY N D P. Calorimetric determination of the thermodynamic properties of the binary eutectics in the NaNO3 Ca(NO3)2 and KNO3 Ca(NO3)2 systems[J]. Thermochimica Acta, 1981, 12(6):59-63.
|
[23] |
JANZ G J. Molten Salts Handbook[M]. Academic Press,1967:39-51.
|
[24] |
WANG L, TAN Z C, MENG S G, et al. Enhancement of molar heat capacity of nanostructured Al2O3[J]. J. Nanoparticle Res., 2001, 3(5/6):483-487.
|
[25] |
WANG B X, ZHOU L P, PENG X F. Surface and size effects on the specific heat capacity of nanoparticles[J]. Int. J. Thermophys., 2006, 27(1):139-151.
|
[26] |
DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7):37-42.
|
[27] |
SCHULLER M, LITTLE F, MALIK D, et al. Molten salt-carbon nanotube thermal energy storage for concentrating solar power systems final report[R]. Office of Scientific & Technical Information Technical Reports, 2012.
|
[28] |
AHMED S F, KHALID M, RASHMI W, et al. Recent progress in solar thermal energy storage using nanomaterials[J]. Renewable & Sustainable Energy Reviews, 2017, 67:450-460.
|
[29] |
RASHMI W, KHALID M, ONG S S, et al. Preparation, thermo-physical properties and heat transfer enhancement of nanofluids[J]. Materials Research Express, 2014, 1(3):032001.
|
[30] |
KEBLINSKI P, PHILLPOT S R, CHOI S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat & Mass Transfer, 2002, 45(4):855-863.
|
[31] |
LAMAS B, ABREU B, FONSECA A, et al. Critical analysis of the thermal conductivity models for CNT based nanofluids[J]. International Journal of Thermal Sciences, 2014, 78(1):65-76.
|