[1] |
KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2010, 14(3):955-970.
|
[2] |
RATHOD M K, BANERJEE J. Thermal stability of phase change materials used in latent heat energy storage systems:a review[J]. Renewable and Sustainable Energy Reviews, 2013, 18(2):246-258.
|
[3] |
REN N, WU Y T, MA C F, et al. Preparation and thermal properties of quaternary mixed nitrate with low melting point[J]. Solar Energy Materials & Solar Cells, 2014, 127(4):6-13.
|
[4] |
熊亚选, 栗博, 吴玉庭, 等. 添加纳米SiO2对四元溴化盐相变热物性的影响[J]. 化工学报, 2017, 68(4):1299-1305. XIONG Y X, LI B, WU Y T, et al. Effects of nano-SiO2 addition on the thermal properties of quaternary bromide salts[J]. CIESC Journal, 2017, 68(4):1299-1305.
|
[5] |
TAMME R, BAUER T, BUSCHLE J, et al. Latent heat storage above 120℃ for applications in the industrial process heat sector and solar power generation[J]. International Journal of Energy Research, 2008, 32(3):264-271.
|
[6] |
KINGA P, KRZYSZTOF P. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65(10):67-123.
|
[7] |
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renew. Sustain. Energy Rev., 2009, 13(2):318-345.
|
[8] |
HERRMANN U, KEARNEY D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(1):145-152.
|
[9] |
CHIERUZZI M, CERRITELLI G F, MILIOZZ A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letters, 2013, 8(1):448.
|
[10] |
TIZNOBAIK H, BANERJEE D, SHIN D. Effect of formation of "long range" secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2015, 91:342-346.
|
[11] |
TIZNOBAIK H, BANERJEE D. Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial[J]. Applied Physics Letters, 2013, 102(17):173906.
|
[12] |
SHIN D, BANERJEE D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of Heat Transfer, 2013, 135(3):032801.
|
[13] |
CHOI S, EASTMAN J. Enhancing thermal conductivity of fluids with nanoparticles[J]. Dev. Appl. Newt. Flows, ASME, 1995, 23(1):99-105.
|
[14] |
ANDREU-CABEDO P, MONDRAGON R, HERNANDEZ L, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letters, 2014, 9(1):582.
|
[15] |
SEO J, SHIN D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3-NaNO3-KNO3) salt eutectic for thermal energy storage[J]. Applied Thermal Engineering, 2016, 102:144-148.
|
[16] |
SONG W L, LU Y Y, WUY T, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J]. Solar Energy Materials & Solar Cells, 2018, 179:66-71.
|
[17] |
SHIN D, BANERJEE D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat & Mass Transfer, 2015, 84:898-902.
|
[18] |
TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat & Mass Transfer, 2013, 57(2):542-548.
|
[19] |
DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7):37-42.
|
[20] |
SHIN D, BANERJEE D. Effects of silica nanoparticles on enhancing eutectic carbonate salt specific heat (work in progress)[J]. International Journal of Structural Changes in Solids, 2010, 2:25-31.
|
[21] |
JO B, BANERJEE D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage[J]. International Journal of Thermal Sciences, 2015, 98:219-227.
|
[22] |
SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2015, 133(2):216-226.
|
[23] |
SHIN D, BANERJEE D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International Journal of Heat & Mass Transfer, 2014, 74(5):210-214.
|
[24] |
WEI X, YIN Y, QIN B, et al. Thermal conductivity improvement of liquid nitrate and carbonate salts doped with MgO particles[J]. Energy Procedia, 2017, 142:407-412.
|
[25] |
HUANG Y, CHENG X, LI Y, et al. Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3-KNO3[J]. Solar Energy, 2018, 160:208-215.
|