CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 217-225.DOI: 10.11949/j.issn.0438-1157.20181516
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Qiang YU(),Yuanwei LU(),Xiaopan ZHANG,Yuting WU
Received:
2018-12-26
Revised:
2019-01-07
Online:
2019-03-31
Published:
2019-03-31
Contact:
Yuanwei LU
通讯作者:
鹿院卫
作者简介:
<named-content content-type="corresp-name">于强</named-content>(1988—),男,博士研究生,<email>yuqiang@emails.bjut.edu.cn</email>|鹿院卫(1971—),女,博士,教授,<email>luyuanwei@bjut.edu.cn</email>
基金资助:
CLC Number:
Qiang YU, Yuanwei LU, Xiaopan ZHANG, Yuting WU. Effect of nanoparticles on thermal properties of molten salt composite heat storage materials[J]. CIESC Journal, 2019, 70(S1): 217-225.
于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181516
1 | HerrmannU, KellyB, PriceH. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5): 883-893. |
2 | PriceH, LupfertE, KearneyD, et al. Advances in parabolic trough solar power technology[J]. Journal of Solar Energy Engineering, 2002, 124(2): 109-125. |
3 | BrownD R, LamarcheJ L, SpannerG E. Chemical energy storage system for SEGS solar thermal power plant[C]//International Solar Energy Conference. Honolulu, 1992: 92. |
4 | MalikD R. Evaluation of composite alumina nanoparticle and nitrate eutectic materials for use in concentrating solar power plants[D]. Texas: Texas A&M University, 2010. |
5 | ChieruzziM, CerritelliG F, MiliozziA, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letters, 2013, 8(1): 448. |
6 | Andreu-CabedoP, MondragonR, HernandezL, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letters, 2014, 9(1): 582. |
7 | MingX H, PanC. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2014, 70(3): 174-184. |
8 | ZhangL D, ChenX, WuY T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials & Solar Cells, 2016, 157: 808-813. |
9 | 张璐迪. 纳米SiO2-熔盐复合储热材料的制备与热物性研究[D]. 北京: 北京工业大学, 2016. |
ZhangL D. Experimental study on preparation and thermal properties of composite nano-SiO2 molten salt using in thermal energy storage [D]. Beijing: Beijing University of Technology, 2016. | |
10 | QiaoG, LasfarguesM, AlexiadisA, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111:1517-1522. |
11 | AktayK S D C, TammeR, Müller-SteinhagenH. Thermal conductivity of high-temperature multicomponent materials with phase change[J]. International Journal of Thermophysics, 2008, 29(2): 678-692. |
12 | BauerT, TammeR, ChristM, et al. PCM-graphite composites for high temperature thermal energy storage[C]// Ecostock. DLR, 2006. |
13 | AcemZ, LopezJ, BarrioE P D. KNO3/NaNO3–graphite materials for thermal energy storage at high temperature(Ⅰ): Elaboration methods and thermal properties[J]. Applied Thermal Engineering, 2010, 30(13): 1580-1585. |
14 | LopezJ, AcemZ, BarrioE P D. KNO3/NaNO3–graphite materials for thermal energy storage at high temperature(Ⅱ): Phase transition properties[J]. Applied Thermal Engineering, 2010, 30(13): 1586-1593. |
15 | XiaoX, ZhangP, LiM. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage[J]. Energy Conversion & Management, 2013, 73(73): 86-94. |
16 | 张焘, 曾亮, 张东. 膨胀石墨、石墨烯改善无机盐相变材料热物性能[J]. 无机盐工业, 2010, 42(5): 24-26. |
ZhangT, ZengL, ZhangD. Improvement of thermal properties of hybrid inorganic salt phase change materials by expanded graphite and grapheme[J]. Inorganic Chemicals Industry, 2010, 42(5): 24-26. | |
17 | TianH, WangW, DingJ, et al. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Solar Energy Materials & Solar Cells, 2016, 149: 187-194. |
18 | HuangZ, GaoX, XuT, et al. Thermal property measurement and heat storage analysis of LiNO3/KCI-expanded graphite composite phase change material[J]. Applied Energy, 2014, 115: 265-271. |
19 | TianH, WangW, DingJ, et al. Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites[J]. Applied Energy, 2015, 148: 87-92. |
20 | ZhouD, ZhaoC Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering, 2011, 31(5): 970-977. |
21 | MohamedS A, Al-SulaimanF A, IbrahimN I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable & Sustainable Energy Reviews, 2017, 70: 1072-1089. |
22 | ZhangP, XiaoX, MaZ W. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510. |
23 | ChieruzziM, CerritelliG F, MiliozziA, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells, 2017, 167: 60-69. |
24 | SongW L, LuY W, WuY T, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J]. Solar Energy Materials & Solar Cells, 2018, 179: 66-71. |
25 | 于强, 鹿院卫. 硝酸盐/纳米SiO2/EG复合蓄热材料的制备与热性能研究[C]// 第四届中国太阳能热发电大会. 常州, 2018. |
YuQ, LuY W. Preparation and thermal properties of nitrate/nano-SiO2/EG composite thermal storage materials[C]// Fourth China Solar Thermal Power Generation Congress. Changzhou, 2018. | |
26 | JoB, BanerjeeD. Enhanced specific heat capacity of molten salt-based nanomaterials: effects of nanoparticle dispersion and solvent material[J]. Acta Materialia, 2014, 75(9): 80-91. |
27 | DuddaB, ShinD. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7): 37-42. |
28 | TiznobaikH, ShinD. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat & Mass Transfer, 2013, 57(2): 542-548. |
29 | ShinD, BanerjeeD. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International Journal of Heat & Mass Transfer, 2014, 74(5): 210-214. |
30 | ShinD, BanerjeeD. Enhanced thermal properties of SiO2, nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat & Mass Transfer, 2015, 84: 898-902. |
31 | MunyaloM J, ZhangX L. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: a review[J]. Journal of Molecular Liquids, 2018, 265: 77-87. |
[1] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[2] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[6] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[7] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[8] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[9] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[10] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[11] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[12] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[13] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[14] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[15] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||