CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4728-4736.DOI: 10.11949/j.issn.0438-1157.20180593

Previous Articles     Next Articles

Non-isothermal curing kinetics of polyurethane under high-pressure gas atmosphere

YANG Ze1, HU Dongdong1, LIU Tao1, CAO Kun2, ZHAO Ling1   

  1. 1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
    2. State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2018-05-31 Revised:2018-08-15 Online:2018-11-05 Published:2018-11-05
  • Supported by:

    supported by the National Key Research and Development Program of China (2016YFB0302202) and the National Natural Science Foundation of China (21676092).

高压气体氛围中的聚氨酯非等温固化动力学

杨泽1, 胡冬冬1, 刘涛1, 曹堃2, 赵玲1   

  1. 1. 化学工程联合国家重点实验室, 华东理工大学, 上海 200237;
    2. 化学工程联合国家重点实验室, 浙江大学, 浙江 杭州 310058
  • 通讯作者: 赵玲
  • 基金资助:

    国家重点研发计划项目(2016YFB0302202);国家自然科学基金项目(21676092)。

Abstract:

The non-isothermal curing kinetics of polyurethaneunder CO2 and N2 atmosphere in the pressure range of 0.1-6 MPa were studied using a high-pressure DSC. The Kissinger method and isoconversional method with two different integral equations were adopted to calculate the activation energy. Based on the non-isothermal measurements, the curing mechanism functions f(α) and kinetic parameters could be obtained by the Málek mehod. Then the curing kinetic equations of PU at different pressures of CO2and N2 were determined, and the effects of high pressure CO2 and N2 on the curing process could also be investigated. The results indicated that the activation energy decreased with the increasing of gas pressures which could be explained by the solvent effect and static pressure effect, and high pressure CO2is more beneficial to promote curing reaction than N2. Using the Sestak-Berggren model, it is found that the model is consistent with the DSC curve obtained by non-isothermal test in different pressure gas atmospheres, indicating the system conforms to the autocatalytic model in the presence of atmospheric pressure and high pressure gas.

Key words: polyurethane, carbon dioxide, nitrogen, non-isothermal curing kinetics, kinetic modeling, autocatalysis

摘要:

采用高压DSC对0.1~6 MPa压力范围二氧化碳(CO2)及氮气(N2)氛围中的聚氨酯非等温固化动力学进行了研究。利用Kissinger法及两种不同积分形式的等转化率法求取了聚氨酯固化过程的表观活化能Ea,在此基础上采用Málek法确定了固化反应的机理函数及动力学参数,得到固化反应动力学方程,并分析了高压CO2及N2的存在对固化过程的影响。研究结果表明,该聚氨酯体系的活化能随着反应转化率的增加呈现出典型的先减小后增加的S型反应特征,由于高压气体的静压作用及溶剂效应,体系的表观活化能随着气体压力的升高而逐渐降低,CO2的溶剂效应明显强于N2;利用Sestak-Berggren模型进行拟合,发现在不同压力的气体氛围中该模型与非等温测试得到的DSC曲线较为吻合,表明该体系在常压及高压气体存在下均符合自催化模型。

关键词: 聚氨酯, 二氧化碳, 氮气, 非等温固化动力学, 动力学模型, 自催化

CLC Number: