CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 280-289.DOI: 10.11949/j.issn.0438-1157.20180603
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Hui e LIU(),Yangfan HUANG,Yanbing MA,Shuang CHEN
Received:
2018-06-01
Revised:
2018-11-05
Online:
2019-01-05
Published:
2019-01-05
Contact:
Hui e LIU
通讯作者:
刘会娥
作者简介:
刘会娥(1972—),女,博士,教授,<email>liuhuie@upc.edu.cn</email>
基金资助:
CLC Number:
Hui e LIU, Yangfan HUANG, Yanbing MA, Shuang CHEN. Saturated adsorption capacities of graphene aerogels on organics[J]. CIESC Journal, 2019, 70(1): 280-289.
刘会娥, 黄扬帆, 马雁冰, 陈爽. 石墨烯基气凝胶对有机物的饱和吸附能力[J]. 化工学报, 2019, 70(1): 280-289.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180603
No. | Aerogel type | Adsorbate | Adsorption capacity/(g·g?1) | Ref. |
---|---|---|---|---|
1 | hybrid foam of graphene and carbon nanotube | compressor oil | 85 | [9] |
sesam oil | 102 | |||
chloroform | 105 | |||
toluene | 130 | |||
DMF | 105 | |||
dichlorobenzene | 131 | |||
2 | graphene sponge | diesel oil | 129 | [10] |
vegetable oil | 96 | |||
chloroform | 154 | |||
ethylene glycol | 131 | |||
acetic ester | 93 | |||
ethanol | 79 | |||
n-heptane | 76 | |||
3 | ultra-flyweight aerogel | crude oil | 289 | [11] |
motor oil | 341 | |||
vegetable oil | 418 | |||
ethanol | 350 | |||
n-hexane | 215 | |||
toluene | 350 | |||
1,4-dioxane | 489 | |||
1-butyl-3-methylimidazolium tetrafluoroborate | 527 | |||
chloroform | 568 | |||
phenixin | 743 | |||
4 | graphene aerogel | n-hexane | 120 | [17] |
n-dodecane | 140 | |||
ethanol | 143 | |||
turpentine oil | 162 | |||
tributyl phosphate | 170 | |||
N-mehtyl pyrrolidone | 173 | |||
ethylene glycol | 182 | |||
dichloromethane | 196 | |||
carbon tetrachloride | 250 | |||
5 | graphene aerogel | n-hexane | 138 | [18] |
n-heptane | 142 | |||
vegetable oil | 193 | |||
pump oil | 187 | |||
white oil | 193 | |||
acetone | 161 | |||
ethanol | 158 | |||
6 | graphene sponge | petroleum ether | 510 | [19] |
acetone | 710 | |||
ethanol | 660 | |||
toluene | 720 | |||
pump oil | 1010 | |||
N-methyl pyrolidone | 755 | |||
7 | graphene/nanofiber aerogel | phenixin | 735 | [20] |
chloroform | 642 | |||
dichloroethane | 515 | |||
dioxane | 471 | |||
olive oil | 390 | |||
pump oil | 381 | |||
toluene | 377 | |||
p-xylene | 355 | |||
ethanol | 312 | |||
n-hexane | 230 | |||
8 | graphene aerogel | n-heptane | 122 | this work |
cyclohexane | 138 | |||
methylbenzene | 150 | |||
N,N-dimethylformamide | 164 | |||
dibutyl phthalate | 170 | |||
propanetriol | 194 | |||
phenixin | 237 | |||
aviation kerosene | 140 |
Table 1 Saturated adsorption capacities of carbon aerogels
No. | Aerogel type | Adsorbate | Adsorption capacity/(g·g?1) | Ref. |
---|---|---|---|---|
1 | hybrid foam of graphene and carbon nanotube | compressor oil | 85 | [9] |
sesam oil | 102 | |||
chloroform | 105 | |||
toluene | 130 | |||
DMF | 105 | |||
dichlorobenzene | 131 | |||
2 | graphene sponge | diesel oil | 129 | [10] |
vegetable oil | 96 | |||
chloroform | 154 | |||
ethylene glycol | 131 | |||
acetic ester | 93 | |||
ethanol | 79 | |||
n-heptane | 76 | |||
3 | ultra-flyweight aerogel | crude oil | 289 | [11] |
motor oil | 341 | |||
vegetable oil | 418 | |||
ethanol | 350 | |||
n-hexane | 215 | |||
toluene | 350 | |||
1,4-dioxane | 489 | |||
1-butyl-3-methylimidazolium tetrafluoroborate | 527 | |||
chloroform | 568 | |||
phenixin | 743 | |||
4 | graphene aerogel | n-hexane | 120 | [17] |
n-dodecane | 140 | |||
ethanol | 143 | |||
turpentine oil | 162 | |||
tributyl phosphate | 170 | |||
N-mehtyl pyrrolidone | 173 | |||
ethylene glycol | 182 | |||
dichloromethane | 196 | |||
carbon tetrachloride | 250 | |||
5 | graphene aerogel | n-hexane | 138 | [18] |
n-heptane | 142 | |||
vegetable oil | 193 | |||
pump oil | 187 | |||
white oil | 193 | |||
acetone | 161 | |||
ethanol | 158 | |||
6 | graphene sponge | petroleum ether | 510 | [19] |
acetone | 710 | |||
ethanol | 660 | |||
toluene | 720 | |||
pump oil | 1010 | |||
N-methyl pyrolidone | 755 | |||
7 | graphene/nanofiber aerogel | phenixin | 735 | [20] |
chloroform | 642 | |||
dichloroethane | 515 | |||
dioxane | 471 | |||
olive oil | 390 | |||
pump oil | 381 | |||
toluene | 377 | |||
p-xylene | 355 | |||
ethanol | 312 | |||
n-hexane | 230 | |||
8 | graphene aerogel | n-heptane | 122 | this work |
cyclohexane | 138 | |||
methylbenzene | 150 | |||
N,N-dimethylformamide | 164 | |||
dibutyl phthalate | 170 | |||
propanetriol | 194 | |||
phenixin | 237 | |||
aviation kerosene | 140 |
No. | Type of aerogel | Slope/ (cm3·g?1) | R 2 | Pore volume/(cm3·g?1) | Pore occupancy/% | Ref. |
---|---|---|---|---|---|---|
M1 | hybrid foam of graphene and carbon nanotube | 98.57 | 0.9346 | 144.05 | 68.43 | [9] |
M2 | ultra-flyweight aerogel | 423.37 | 0.9877 | 713.83 | 59.31 | [11] |
M3 | graphene aerogel | 147.28 | 0.9958 | 321.92 | 45.75 | [12]① |
M4 | graphene aerogel | 166.20 | 0.9940 | 166.00 | 100.12 | [17] |
M5 | graphene aerogel | 209.5 | 0.9992 | 237.64 | 88.15 | [18] |
M6 | graphene sponge | 759.57 | 0.9861 | 999.55 | 75.99 | [19] |
M7 | graphene / nanofiber aerogel | 432.4 | 0.9961 | 555.10 | 77.90 | [20] |
M8 | graphene nanoribbon aerogel-1 | 44.67 | 0.9734 | 45.00 | 99.27 | [21] |
M9 | graphene nanoribbon aerogel-2 | 111.91 | 0.9968 | 132.88 | 84.22 | [21] |
M10 | polydimethylsiloxane modified graphene nanoribbon aerogels | 196.78 | 0.9969 | 399.55 | 49.25 | [21] |
M11 | graphene - carbon nanotube composite aerogel | 87.01 | 0.9984 | 103.28 | 84.25 | [22] |
M12 | carbon nanofiber aerogel | 185.76 | 0.9880 | 199.56 | 93.08 | [24] |
M13 | nitrogen-doped graphene aerogel | 117.45 | 0.9844 | 199.55 | 58.86 | [23] |
M14 | reduced graphene coated polyamides sponge | 106.75 | 0.9919 | 113.20 | 94.30 | [25] |
M15 | graphene oxide coated polyurethane sponge | 92.94 | 0.9941 | 110.66 | 83.99 | [25] |
M16 | carbon nanotube / graphene hybrid aerogel | 138.50 | 0.9831 | — | — | [26] |
M17 | N-doped graphene aerogel | 71.39 | 0.9758 | 85.01 | 83.96 | [27] |
M18 | graphene foam | 24.77 | 0.9192 | — | — | [28] |
M19 | carbon fiber aerogel | 79.27 | 0.9863 | 82.88 | 95.64 | [29]① |
M20 | graphene-carbon nanotube aerogel | 37.82 | 0.9989 | — | — | [30] |
M21 | graphene aerogel | 160.57 | 0.9943 | 169.61 | 94.67 | this work |
Table 2 Fitting results of adsorption capacities from different researchers
No. | Type of aerogel | Slope/ (cm3·g?1) | R 2 | Pore volume/(cm3·g?1) | Pore occupancy/% | Ref. |
---|---|---|---|---|---|---|
M1 | hybrid foam of graphene and carbon nanotube | 98.57 | 0.9346 | 144.05 | 68.43 | [9] |
M2 | ultra-flyweight aerogel | 423.37 | 0.9877 | 713.83 | 59.31 | [11] |
M3 | graphene aerogel | 147.28 | 0.9958 | 321.92 | 45.75 | [12]① |
M4 | graphene aerogel | 166.20 | 0.9940 | 166.00 | 100.12 | [17] |
M5 | graphene aerogel | 209.5 | 0.9992 | 237.64 | 88.15 | [18] |
M6 | graphene sponge | 759.57 | 0.9861 | 999.55 | 75.99 | [19] |
M7 | graphene / nanofiber aerogel | 432.4 | 0.9961 | 555.10 | 77.90 | [20] |
M8 | graphene nanoribbon aerogel-1 | 44.67 | 0.9734 | 45.00 | 99.27 | [21] |
M9 | graphene nanoribbon aerogel-2 | 111.91 | 0.9968 | 132.88 | 84.22 | [21] |
M10 | polydimethylsiloxane modified graphene nanoribbon aerogels | 196.78 | 0.9969 | 399.55 | 49.25 | [21] |
M11 | graphene - carbon nanotube composite aerogel | 87.01 | 0.9984 | 103.28 | 84.25 | [22] |
M12 | carbon nanofiber aerogel | 185.76 | 0.9880 | 199.56 | 93.08 | [24] |
M13 | nitrogen-doped graphene aerogel | 117.45 | 0.9844 | 199.55 | 58.86 | [23] |
M14 | reduced graphene coated polyamides sponge | 106.75 | 0.9919 | 113.20 | 94.30 | [25] |
M15 | graphene oxide coated polyurethane sponge | 92.94 | 0.9941 | 110.66 | 83.99 | [25] |
M16 | carbon nanotube / graphene hybrid aerogel | 138.50 | 0.9831 | — | — | [26] |
M17 | N-doped graphene aerogel | 71.39 | 0.9758 | 85.01 | 83.96 | [27] |
M18 | graphene foam | 24.77 | 0.9192 | — | — | [28] |
M19 | carbon fiber aerogel | 79.27 | 0.9863 | 82.88 | 95.64 | [29]① |
M20 | graphene-carbon nanotube aerogel | 37.82 | 0.9989 | — | — | [30] |
M21 | graphene aerogel | 160.57 | 0.9943 | 169.61 | 94.67 | this work |
1 | Ge J , Zhao H , Zhu H , et al . Advanced sorbents for oil-spill cleanup: recent advances and future perspectives[J]. Adv. Mater., 2016, 28(47):10459. |
2 | Das R , Hamid S B A , Ali M E , et al . Multifunctional carbon nanotubes in water treatment: the present, past and future[J]. Desalination, 2014, 354: 160-179. |
3 | 石效卷, 李璐, 张涛 . 水十条, 水实条——对《水污染防治行动计划》的解读[J]. 环境保护科学, 2015, 41(3): 1-3. |
Shi X J , Li L , Zhang T . Water pollution control action plan, a realistic and pragmatic plan—an interpretation of water pollution control action plan[J]. Environmental Protection Science, 2015, 41(3): 1-3. | |
4 | 陈超, 刘杨, 林鹏飞, 等 . 新《水污染防治法》在保障供水安全方面的法制化建设成果[J].中国给水排水,2017, 33(20): 11-19 |
Chen C , Liu Y , Lin P F , et al . Study on the legislation achievement on water supply by the recently amended water pollution prevention and control law of China[J]. China Water & Wastewater, 2017, 33(20): 11-19. | |
5 | 张文 . 油田污水处理技术现状及发展趋势[J]. 油气地质与采收率, 2010, 17(2): 108-110. |
Zhang W . Status and progress of oil-bearing wastewater treatment processes in oilfield[J]. PGRE, 2010, 17(2): 108-110. | |
6 | Kemp K C , Seema H , Saleh M , et al . Environmental applications using graphene composites: water remediation and gas adsorption[J]. Nanoscale, 2013, 5: 3149–3171. |
7 | Stankovich S , Dikin D A , Piner R D , et al . Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45: 1558-1565. |
8 | 孙怡然, 杨明轩, 于飞,等 . 石墨烯气凝胶吸附剂的制备及其在水处理中的应用[J]. 化学进展, 2015, 27(8): 1133-1146. |
Sun Y R , Yang M X , Yu F , et al . Synthesis of graphene aerogel adsorbents and their applications in water treatment[J]. Progress in Chemistry, 2015, 27(8): 1133-1146. | |
9 | Dong X , Chen J , Ma Y , et al . Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chem. Commun., 2012, 48: 10660-10662. |
10 | Zhao J , Ren W , Cheng H . Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations[J]. J. Mater. Chem., 2012, 22: 20197-20202. |
11 | Sun H , Xu Z , Gao C . Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Adv. Mater., 2013, 25: 2554-2560. |
12 | Huang J , Liu H , Chen S , et al . Graphene aerogel prepared through double hydrothermal reduction as high performance oil adsorbent[J]. Materials Science & Engineering B, 2017, 226: 141-150. |
13 | Cote L J , Kim F , Huang J . Langmuir-Blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society, 2009, 131(3): 1043-1049. |
14 | Xu L M , Xiao G Y , Chen C B , et al . Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction[J]. Journal of Materials Chemistry A, 2015, 3(14): 7498-7504. |
15 | Chen J , Chi F Y , Huang L , et al . Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes[J]. Carbon, 2016, 110: 34-40. |
16 | Shin H J , Kim K K , Benayad A , et al . Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials, 2009, 19(12): 1987-1992. |
17 | Li J , Li J , Meng H , et al . Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. |
Mater J. . Chem. A, 2014, 2, 2934-2941. | |
18 | Liu T , Huang M , Li X , et al . Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J]. Carbon, 2016, 100: 456-464. |
19 | Wu Y , Yi N , Huang L , et al . Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio[J]. Nature Communications, 2015, 6: 6141. |
20 | Xiao J , Lv W , Song Y , et al . Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation[J]. Chemical Engineering Journal, 2018, 338: 202-210. |
21 | Chen L , Du R , Zhang J , et al . Density controlled oil uptake and beyond: from carbon nanotubes to graphene nanoribbon aerogels[J]. |
Mater J. . Chem. A, 2015, 3: 20547-20553. | |
22 | 马雁冰, 刘会娥, 陈爽, 等 . 碳纳米管-石墨烯气凝胶制备及其对水中乳化油的吸附特性[J]. 化工学报, 2018, 69 (4): 1508-1517. |
Ma Y B , Liu H E , Chen S , et al . Facial synthesis of carbon nanotubes-graphene aerogels and its adsorption property for emulsified oil in water[J]. CIESC Journal, 2018, 69(4):1508-1517. | |
23 | Song X , Lin L , Rong M , et al . Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel[J]. Carbon, 2014, 80: 174-182. |
24 | Wu Z , Li C , Liang H , et al . Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angew. Chem., 2013, 125: 2997-3001. |
25 | Liu Y , Ma J , Wu T , et al . Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent[J]. ACS Appl. Mater. Interfaces, 2013, 5: 10018-10026. |
26 | Hu H , Zhao Z , Gogotsi Y , et al . Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption[J]. Environ. Sci. Technol. Lett. 2014, 1: 214-220. |
27 | Ren H , Shi X , Zhu J , et al . Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption[J]. J. Mater Sci., 2016, 51: 6419-6427. |
28 | Yang S , Chen L , Mu L , et al . Graphene foam with hierarchical structures for the removal of organic pollutants from water[J]. RSC Adv., 2016, 6 (6): 4889-4898. |
29 | Bi H , Yin Z , Cao X , et al . Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents[J]. Adv. Mater., 2013, 25: 5916-5921. |
30 | Kabiri S , Tran D N H , Altalhi T , et al . Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal[J]. Carbon, 2014, 80: 523-533. |
31 | Bering B P , Dubinin M M , Serpinsky V V . Theory of volume filling for vapor adsorption[J]. Journal of Colloid and Interface Science, 1966, 21(4), 378-393. |
32 | Marzbali M H , Esmaieli M . Fixed bed adsorption of tetracycline on a mesoporous activated carbon: experimental study and neuro-fuzzy modeling[J]. Journal of Applied Research and Technology, 2017, 15: 454-463. |
33 | 叶振华, 化工吸附分离过程[M]. 北京: 中国石化出版社, 1992: 123. |
Ye Z H . Chemical Adsorption Separation Process[M]. Beijing: Sinopec Press, 1992: 123. | |
34 | 黄扬帆, 刘会娥, 王振有, 等 . 软模板法石墨烯气凝胶的制备及其对水中油品的吸附机理[J]. 高校化学工程学报, 2018, 32(4): 940-948. |
Huang Y F , Liu H E , Wang Z Y , et al . Preparation of graphene aerogels with soft templates and their oil adsorption mechanism from water[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 940-948. | |
35 | Weber W J , Morris J C . Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, 1963, 89(17): 31-59. |
36 | Bhattacharyya K G , Shama A . Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachtaindica) leaf powder[J]. Dyes & Pigments, 2005, 65(1): 51-59. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[6] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[10] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[11] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[12] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[13] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[14] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[15] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||