1 |
叶有华, 彭少麟. 露水对植物的作用效应研究进展[J]. 生态学报, 2011, 31(11): 3190-3196.
|
|
YeY H, PengS L. Review of dew action effect on plants[J]. Acta Ecologica Sinica, 2011, 31(11): 3190-3196.
|
2 |
ChangS T, VelevO D. Evaporation-induced particle microseparations inside droplets floating on a chip[J]. Langmuir, 2006, 22(4): 1459-1468.
|
3 |
LimT, HanS, ChungJ, et al. Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 431-441.
|
4 |
余杨, 陈秀红, 张天顺, 等. 农药雾滴在烟叶叶面上蒸发时间的影响因素[J]. 农业工程学报, 2011, 27(11): 263-267.
|
|
YuY, ChenX H, ZhangT S, et al. Influence factors of evaporation time of pesticide droplets on different tobacco leaves[J]. Transactions of the CSAE, 2011, 27(11): 263-267.
|
5 |
ThokchomA K, ZhouQ, KimD, et al. Characterizing self-assembly and deposition behavior of nanoparticles in inkjet-printed evaporating droplets[J]. Sensors and Actuators B: Chemical, 2017, 252: 1063-1070.
|
6 |
KumariN, GarimellaS V. Characterization of the heat transfer accompanying electrowetting or gravity-induced droplet motion[J]. International Journal of Heat and Mass Transfer, 2011, 54(17/18): 4037-4050.
|
7 |
PicknettR G, BexonR. Evaporation of sessile or pendant drops in still air[J]. Journal of Colloid & Interface Science, 1977, 61(2): 336-350.
|
8 |
YuH, SoolamanD M, RoweA W, et al. Evaporation of water microdroplets on self-assembled monolayers: from pinning to shrinking[J]. ChemPhysChem, 2004, 5(7): 1035-1038.
|
9 |
FangX, PimentelM, SokolovJ, et al. Dewetting of the three-phase contact line on solids[J]. Langmuir, 2010, 26(11): 7682-7685.
|
10 |
高明, 孔鹏, 章立新. 恒热流条件下亲疏水表面液滴蒸发特性[J]. 化工学报, 2018, 69(7): 2979-2984.
|
|
GaoM, KongP, ZhangL X. The character of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat fluxes[J]. CIESC Journal, 2018, 69(7): 2979-2984.
|
11 |
DeeganR D, BakajinO, DupontT F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653): 827-829.
|
12 |
HuH, LarsonR G. Marangoni effect reverses coffee-ring depositions[J]. The Journal of Physical Chemistry B, 2006, 110(14): 7090-7094.
|
13 |
WeonB M, JeJ H. Capillary force repels coffee-ring effect[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 2010, 82(1): 15305.
|
14 |
ErbilH Y, McHaleG, NewtonM I. Drop evaporation on solid surfaces: constant contact angle mode[J]. Langmuir, 2002, 18(7): 2636-2641.
|
15 |
HuH, LarsonR G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344.
|
16 |
PopovY O. Evaporative deposition patterns: spatial dimensions of the deposit[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 2005, 71(3): 36313.
|
17 |
DunnG J, WilsonS K, DuffyB R, et al. The strong influence of substrate conductivity on droplet evaporation[J]. Journal of Fluid Mechanics, 2009, 623: 329.
|
18 |
DunnG J, WilsonS K, DuffyB R, et al. Evaporation of a thin droplet on a thin substrate with a high thermal resistance[J]. Physics of Fluids, 2009, 21(5): 181-336.
|
19 |
张凯, 王依霖, 徐学锋. 基底厚度对蒸发液滴表面温度分布的影响[J]. 化工学报, 2015, 66(2): 703-708.
|
|
ZhangK, WangY L, XuX F. Influence of substrate thickness on temperature distribution along surface of drying droplets [J]. CIESC Journal, 2015, 66(2): 703-708.
|
20 |
辛娟娟, 周致富, 辛慧, 等. 单个液滴蒸发模型中不同质量传递公式的有效性分析[J]. 化工学报, 2012, 63(6): 1704-1708.
|
|
XinJ J, ZhouZ F, XinH, et al. Validation analysis of different mass transfer formula in single droplet evaporation model[J]. CIESC Journal, 2012, 63(6): 1704-1708.
|
21 |
ZubkovV S, CossaliG E, ToniniS, et al. Mathematical modelling of heating and evaporation of a spheroidal droplet[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2181-2190.
|
22 |
SobacB, BrutinD. Thermal effects of the substrate on water droplet evaporation[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 2012, 86(2): 21602.
|
23 |
CarleF, SobacB, BrutinD. Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation[J]. Applied Physics Letters, 2013, 102(6): 336-350.
|
24 |
CarleF, SemenovS, MedaleM, et al. Contribution of convective transport to evaporation of sessile droplets: empirical model[J]. International Journal of Thermal Sciences, 2016, 101: 35-47.
|
25 |
LewisN S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): d1920.
|
26 |
HanW, ByunM, LinZ. Assembling and positioning latex nanoparticles via controlled evaporative self-assembly[J]. Journal of Materials Chemistry, 2011, 21(42): 16968.
|
27 |
XueG, XuY, DingT, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4): 317-321.
|
28 |
WangX, HeY, LiuX, et al. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation[J]. Solar Energy, 2017, 157: 35-46.
|
29 |
StauberJ M, WilsonS K, DuffyB R, et al. Evaporation of droplets on strongly hydrophobic substrates[J]. Langmuir, 2015, 31(12): 3653-3660.
|
30 |
DashS, GarimellaS V. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 2014, 89(4): 42402.
|