CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1135-1143.DOI: 10.11949/j.issn.0438-1157.20181079
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Lei WANG1(),Guiying FANG2(),Qingyuan YANG1()
Received:
2018-09-26
Revised:
2018-12-10
Online:
2019-03-05
Published:
2019-03-05
Contact:
Guiying FANG,Qingyuan YANG
通讯作者:
方桂英,阳庆元
作者简介:
<named-content content-type="corresp-name">王磊</named-content>(1993—),男,硕士研究生,<email>evacolin@163.com</email>|方桂英(1964—),女,学士,副教授,<email>guiyingfang1012@163.com</email>|阳庆元(1976—),男,博士,教授,<email>qyyang@mail.buct.edu.cn</email>
基金资助:
CLC Number:
Lei WANG, Guiying FANG, Qingyuan YANG. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening[J]. CIESC Journal, 2019, 70(3): 1135-1143.
王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181079
Atom pair | D0/(kJ/mol) | R0/nm | α |
---|---|---|---|
Cu-CO2-O[ | 1.0113 | 0.3313 | 10.5781 |
Table 1 Morse potential parameter for describing specific interactions between CO2 molecules and open Cu sites of MOFs
Atom pair | D0/(kJ/mol) | R0/nm | α |
---|---|---|---|
Cu-CO2-O[ | 1.0113 | 0.3313 | 10.5781 |
Fig.2 Gravimetric CO2 uptakes of 763 MOFs with Cu-OMS versus largest cavity diameter (LCD) (a), zero-coverage isosteric heat of adsorption (Qst0) (b) under ambient conditions
Fig.3 Relationships of CO2 uptake of 763 Cu-OMS-containing MOFs under ambient conditions with pore volume(a), fraction(b), accessible surface area(c) and adsorbility (AD)(d)(Uptakes are colored by value of AD in (a), (b) and (c))
Fig.6 CO2/N2 (15:85) separation performance of 763 MOFs with Cu-OMS at 298K and 0.1 MPa(Squares represent top 2 MOFs identified in this work; triangles denote some of best MOFs experimentally reported in literature)
1 | BaeY S, SnurrR Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011, 50(49): 11586-11596. |
2 | QuadrelliR, PetersonS. The energy-climate challenge: recent trends in CO2 emissions from fuel combustion[J]. Energy Policy, 2007, 35(11): 5938-5952. |
3 | YangQ Y, ZhongC L, ChenJ F. Computational study of CO2 storage in metal-organic frameworks[J]. J. Phys. Chem. C, 2008, 112(5): 1562-1569. |
4 | XiangS C, HeY B, ZhangZ G, et al. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions[J]. Nat. Commun., 2012, 3: 954. |
5 | LinZ D, LvZ Q, ZhouX, et al. Postsynthetic strategy to prepare ACN@Cu-BTCs with enhanced water vapor stability and CO2/CH4 separation selectivity[J]. Ind. Eng. Chem. Res., 2018, 57(10): 3765-3772. |
6 | SalehM, LeeH M, KempK C, et al. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers[J]. ACS Appl. Mater. Interfaces, 2014, 6(10): 7325-7333. |
7 | HaszeldineR S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325: 1647-1652. |
8 | FurukawaH, CordovaK E, O'keeffeM, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341: 1230444. |
9 | Gómez-GualdrónD A, ColónY J, ZhangX, et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage[J]. Energy Environ. Sci., 2016, 9(10): 3279-3289. |
10 | NugentP, BelmabkhoutY, BurdS D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495: 80-84. |
11 | HeY B, ZhouW, QianG D, et al. Methane storage in metal-organic frameworks[J]. Chem. Soc. Rev., 2014, 43(16): 5657-5678. |
12 | MasonJ A, VeenstraM, LongJ R. Evaluating metal-organic frameworks for natural gas storage[J]. Chem. Sci., 2014, 5(1): 32-51. |
13 | ZornozaB, TellezC, CoronasJ, et al. Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential[J]. Microporous Mesoporous Mater., 2013, 166: 67-78. |
14 | HuangC, SunR, LuH, et al. A pilot trial for fast deep desulfurization on MOF-199 by simultaneous adsorption-separation via hydrocyclones[J]. Sep. Purif. Technol., 2017, 182: 110-117. |
15 | LiuY, LiuH, HuY, et al. Density functional theory for adsorption of gas mixtures in metal-organic frameworks[J]. J. Phys. Chem. B, 2010, 114(8): 2820-2827. |
16 | LeeJ Y, FarhaO K, RobertsJ, et al. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009, 38(5): 1450-1459. |
17 | CaskeyS R, Wong-FoyA G, MatzgerA J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. J. Am. Chem. Soc., 2008, 130(33): 10870-10871. |
18 | ZhaoX, WangY X, LiD S, et al. Metal-organic frameworks for separation[J]. Adv. Mater., 2018: 1705189. |
19 | AdilK, BelmabkhoutY, PillaiR S, et al. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship[J]. Chem. Soc. Rev., 2017, 46(11): 3402-3430. |
20 | AltintasC, AvciG, DaglarH, et al. Database for CO2 separation performances of MOFs based on computational materials screening[J]. ACS Appl. Mater. Interfaces, 2018, 10(20): 17257-17268. |
21 | WatanabeT, ShollD S. Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials[J]. Langmuir, 2012, 28(40): 14114-14128. |
22 | LiS, ChungY G, Snurr, R Q. High-throughput screening of metal-organic frameworks for CO2 capture in the presence of water[J]. Langmuir, 2016, 32(40): 10368-10376. |
23 | QiaoZ, PengC, ZhouJ, et al. High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture[J]. J. Mater. Chem. A, 2016, 4(41): 15904-15912. |
24 | ChenY, WangB, WangX Q, et al. A copper(Ⅱ)-paddlewheel metal-organic framework with exceptional hydrolytic stability and selective adsorption and detection ability of aniline in water[J]. ACS Appl. Mater. Interfaces, 2017, 9(32): 27027-27035. |
25 | KimH K, YunW S, KimM B, et al. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2[J]. J. Am. Chem. Soc., 2015, 137(31): 10009-10015. |
26 | LinX, TelepeniI, BlakeA J, et al. High capacity hydrogen adsorption in Cu(Ⅱ) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites[J]. J.Am. Chem. Soc., 2009, 131(6): 2159-2171. |
27 | ZhangC, Lan, Y S, GuoX Y, et al. Materials genomics-guided ab initio screening of MOFs with open copper sites for acetylene storage[J]. AIChE J., 2018, 64(4): 1389-1398. |
28 | ChenB L, XiangS C, QianG D. Metal-organic frameworks with functional pores for recognition of small molecules[J]. Accounts Chem. Res., 2010, 43(8): 1115-1124. |
29 | LiuX P, XiaoZ Y, XuJ. A NbO-type copper metal–organic framework decorated with carboxylate groups exhibiting highly selective CO2 adsorption and separation of organic dyes[J]. J.Mater. Chem. A, 2016, 4(36): 13844-13851. |
30 | WillemsT F, RycroftC H, KaziM, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous Mesoporous Mater., 2012, 149(1): 134-141. |
31 | ZhangC, WangL, MaurinG, et al. In silico screening of MOFs with open copper sites for C2H2/CO2 separation[J]. AIChE J., 2018, 64(11): 4089-4096. |
32 | PotoffJ J, SiepmannJ I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE J., 2001, 47(7): 1676-1682. |
33 | HarrisJ G, YungK H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. J. Phys. Chem., 1995, 99(31): 12021-12024. |
34 | RappeA K, CasewitC J, ColwellK S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. J. Am. Chem. Soc., 1992, 114(25): 10024-10035. |
35 | EwaldP P. Die Berechnung optischer und elektrostatischer Gitterpotentiale[J]. Ann. Phys., 1921, 396(3): 253-287. |
36 | VlugtT J H, Garcia-PerezE, DubbeldamD, et al. Computing the heat of adsorption using molecular simulations: the effect of strong coulombic interactions[J]. J. Chem. Theory Comput., 2008, 4(7): 1107-1118. |
37 | WellsB A, Bruin-DickasonC D, ChaffeeA L. Charge equilibration based on atomic ionization in metal-organic frameworks[J]. J. Phys. Chem. C, 2015, 119(1): 456-466. |
38 | BrenemanC M, WibergK B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis[J]. J. Comput. Chem., 1990, 11(3): 361-373. |
39 | QiaoZ, WangN, JiangJ, et al. Design of amine-functionalized metal-organic frameworks for CO2 separation: the more amine, the better? [J]. Chem. Commun., 2016, 52(5): 974-977. |
40 | ScottH S, ShivannaM, BajpaiA, et al. Highly selective separation of C2H2 from CO2 by a new dichromate-based hybrid ultramicroporous material[J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 33395-33400. |
41 | ChowdhuryP, BikkinaC, MeisterD, et al. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes[J]. Microporous Mesoporous Mater., 2009, 117: 406-413. |
42 | LiB Y, ZhangZ J, LiY, et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework[J]. Angew. Chem. Int. Ed., 2012, 51(6): 1412-1415. |
43 | CaiJ F, Wang, H Z, WangH L, et al. An amino-decorated Nbo-type metal-organic framework for high C2H2 storage and selective CO2 capture[J]. RSC Adv., 2015, 5(94): 77417-77422. |
44 | SongC L, HeY B, LiB, et al. Enhanced CO2 sorption and selectivity by functionalization of a Nbo-type metal-organic framework with polarized benzothiadiazole moieties[J]. Chem. Commun., 2014, 50(81): 12105-12108. |
45 | LinL C, BergerA H, MartinR L, et al. In silico screening of carbon-capture materials[J]. Nat. Mater., 2012, 11(7): 633-641. |
46 | WuD, WangC C, LiuB, et al. Large-scale computational screening of metal-organic frameworks for CH4/H2 separation[J]. AIChE J., 2012, 58(7): 2078-2084. |
47 | BoldogI, BereciartuaP J, BulánekR, et al. 10-Vertex closo-carborane: a unique ligand platform for porous coordination polymers[J]. CrystEngComm, 2016, 18(12): 2036-2040. |
48 | PangJ D, LiuC P, HuangY G, et al. Visualizing the dynamics of temperature- and solvent-responsive soft crystals[J]. Angew. Chem. Int. Ed., 2016, 55(26): 7478-7482. |
49 | WuH, SimmonsJ M, SrinivasG, et al. Adsorption sites and binding nature of CO2 in prototypical metal-organic frameworks: a combined neutron diffraction and first-principles study[J]. J. Phys. Chem. Lett., 2010, 1(13): 1946-1951. |
50 | ChenK J, MaddenD G, PhamT, et al. Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2[J]. Angew. Chem. Int. Ed., 2016, 55(35): 10268-10272. |
51 | HuangS L, WengL H, JinG X. Bottom-up synthesis of coordination polymers based on carborane backbones and Cu2(CO2)4 paddle-wheel: ligand metathesis with metallotecons[J]. Dalton Trans., 2012, 41(38): 11657-11662. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[11] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[12] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[13] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[14] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[15] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||