CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1144-1151.DOI: 10.11949/j.issn.0438-1157.20181287
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yating ZHANG1,2(),Kaibo ZHANG1,Kaili JIA1,Xinfu HE1,2,Guoyang LIU1,2,Wei WANG1,Yongling ZHANG1,Jieshan QIU3,4
Received:
2018-11-02
Revised:
2018-12-24
Online:
2019-03-05
Published:
2019-03-05
Contact:
Yating ZHANG
张亚婷1,2(),张凯博1,贾凯丽1,贺新福1,2,刘国阳1,2,王伟1,张永玲1,邱介山3,4
通讯作者:
张亚婷
作者简介:
张亚婷(1972—),女,博士,教授,<email>isyating@163.com</email>
基金资助:
CLC Number:
Yating ZHANG, Kaibo ZHANG, Kaili JIA, Xinfu HE, Guoyang LIU, Wei WANG, Yongling ZHANG, Jieshan QIU. Preparation and lithium storage properties of flexible self-standing PDDA-Si/G nanocomposite film[J]. CIESC Journal, 2019, 70(3): 1144-1151.
张亚婷, 张凯博, 贾凯丽, 贺新福, 刘国阳, 王伟, 张永玲, 邱介山. 柔性自支撑PDDA-Si/G纳米复合薄膜的制备及储锂性能[J]. 化工学报, 2019, 70(3): 1144-1151.
Fig.3 SEM photograph of flexible self-standing PDDA-Si/G film(a),(b); cross-sectional SEM image of composite material(c) and mapping images of C, O and Si elements of PDDA-Si/G(d)
Fig.6 Cyclic voltammogram of PDDA-Si/G at 0.2 mV/s(a); constant current charge-discharge curves of composite at 0.2 A/g(b); cycle performance curves of PDDA-Si, Si, G and Coulombic efficiency(c); rate performance curve of composite film(d)
Sample | Cycle | R s/Ω | R SEI/Ω | R ct/Ω |
---|---|---|---|---|
pure Si | 0 | 4.16 | — | 297.63 |
PDDA-Si/G | 0 | 3.12 | — | 165.68 |
PDDA-Si/G | 80 | 3.02 | 11.3 | 58.68 |
Table 1 Impedance parameters of Si and PDDA-Si/G electrodes for charge-discharge cycle
Sample | Cycle | R s/Ω | R SEI/Ω | R ct/Ω |
---|---|---|---|---|
pure Si | 0 | 4.16 | — | 297.63 |
PDDA-Si/G | 0 | 3.12 | — | 165.68 |
PDDA-Si/G | 80 | 3.02 | 11.3 | 58.68 |
1 | Li D D , Ding L X , Chen H B , et al . Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries[J]. J. Mater. Chem. A, 2014, 2(39): 16617-16622. |
2 | Kong D Z , Luo J S , Wang Y L , et al . Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage[J]. Adv. Funct. Mater., 2014, 24(24): 3815-3826. |
3 | Son I H , Hwan P J , Kwon S , et al . Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density[J]. Nature Communications, 2015, 6(1):8393. |
4 | Ko M , Chae S , Jeong S , et al . Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2012, 8(8): 8591. |
5 | Wu H , Zheng G , Liu N , et al . Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano Letters, 2012, 12(2): 904. |
6 | Ji J , Ji H , Zhang L L , et al . Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries[J]. Advanced Materials, 2013, 25(33): 4673-4677. |
7 | Zhao C , Yu C , Qiu B , et al . Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions[J]. Advanced Materials, 2018, 30(7): 1702486. |
8 | Yao W Q , Chen J , Zhan L , et al . Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39371-39379. |
9 | Fang C C , Deng Y F , Xie Y , et al . The improved electrochemical performance of Si nanoparticle anode material by synergistic strategies of polydopamine and graphene oxide coatings[J]. Journal of Physical Chemistry C, 2015, 119(4): 1720-1728. |
10 | 何大方, 李丽鲜, 白凤娟, 等 . 结构有序的Si/void/C/graphene纳米复合结构的制备及储锂性能[J]. 化工学报, 2017, 68(9): 3600-3606. |
He D F , Li L X , Bai F J , et al . Design, preparation, and lithium-storage properties of ordered Si/void/C/graphene nanocomposites[J]. CIESC Journal, 2017, 68(9): 3600-3606. | |
11 | Han Y , Zou J , Li Z , et al . Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries[J]. ACS Nano, 2018, 12(5): 4835-4843. |
12 | Li X H , Wu M Q , Feng T T , et al . Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries[J]. RSC Advances, 2017, 7(76): 48286-48293. |
13 | Son I H , Park J H , Park S , et al . Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities[J]. Nature Communications, 2017, 8(1): 1561. |
14 | 孔丽娟, 周晓燕, 范赛英, 等 . 组氨酸功能化石墨烯量子点@纳米硅负极材料的制备及电化学性能研究[J]. 化学学报, 2016, 74(7): 620-628. |
Kong L J , Zhou X Y , Fan S Y , et al . Study on the synthesis and electrichemical performance of histidine-functionalized graphene quantum dots@silicon composite anode material[J]. Acta Chimica Sinica, 2016, 74(7): 620-628. | |
15 | Liu Z J , Guo P Q , Liu B L , et al . Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode[J]. Applied Surface Science, 2017, 396: 41-47. |
16 | An Y L , Fei H F , Zeng G F , et al . Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries[J]. ACS Nano, 2018, 12(5): 4993-5002. |
17 | Liang G M , Qin X Y , Zou J S , et al . Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities[J]. Carbon, 2018, 127: 424-431. |
18 | Feng J K , Zhang Z , Ci L J , et al . Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 287: 177-183. |
19 | Wei S , Hu R Z , Zhang H Y , et al . A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling[J]. Electrochimica Acta, 2016, 187: 1-10. |
20 | Huang R A , Guo Y Z , Chen Z N , et al . An easy and scalable approach to synthesize three-dimensional sandwich-like Si/polyaniline/graphene nanoarchitecture anode for lithium ion batteries[J]. Ceramics International, 2018, 44(4): 4282-4286. |
21 | Lin N , Xu T J , Li T Q , et al . Controllable self-assembly of micro-nanostructured Si-embedded graphite/graphene composite anode for high-performance li-Ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39318-39325. |
22 | Lee B , Liu T , Sun K K , et al . Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries[J]. Carbon, 2017, 119: 438-445. |
23 | Yue H W , Wang S Y , Yang Z B , et al . Ultra-thick porous films of graphene-encapsulated silicon nanoparticles as flexible anodes for lithium ion batteries[J]. Electrochimica Acta, 2015, 174: 688-695. |
24 | Luo Z P , Xiao Q Z , Lei G T , et al . Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon, 2016, 98: 373-380. |
25 | 李海, 吕春祥 . 炭涂层硅/石墨烯纳米复合材料的制备及其储锂性能[J]. 新型炭材料, 2014, 29(4): 295-300. |
Li H , Lyu C X . Preparation and lithium storage performance of a carbon-coated Si/graphene nanocomposite[J]. New Carbon Materials, 2014, 29(4): 295-300. | |
26 | Chang P , Liu X , Zhao Q , et al . Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31879. |
27 | 张兴帅, 许笑目, 郭玉忠, 等 . 锂离子电池Si/RGO@PANI三明治纳米结构负极材料的制备与电化学性能[J]. 无机化学学报, 2017, 33(3): 377-382. |
Zhang X S , Xu X M , Guo Y Z , et al . Preparation and electrochemical properties of sandwich-like Si/RGO@PANI nanocomposites as anode for lithium ion battery [J]. Chinese Journal of Inorganic Chemistry, 2017, 33(3): 377-382. | |
28 | 刘超, 文豪, 张楚虹 . 自支撑纳米硅/石墨烯复合纸柔性电极的制备及其电化学性能的研究[J]. 材料导报, 2016, 30(18): 26-29. |
Liu C , Wen H , Zhang C H . Preparation of free-standing flexible nano-silicon/graphene composite paper electrode for lithium-ion batteries[J]. Materials Review, 2016, 30(18): 26-29. | |
29 | Shang H , Zuo Z C , Yu L , et al . Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion latteries[J]. Advanced Materials, 2018: 1801459. |
30 | Zhu C R , Chao D L , Sun J , et al . Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots[J]. Advanced Materials Interfaces, 2015, 2(2): 239-245. |
31 | Zhang Y T , Zhang K B , Jia K L , et al . Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel, 2019, 241: 646-652. |
32 | Wang Z L , Xu D , Wang H G , et al . In situ fabrication of porous graphene electrodes for high-performance energy storage[J]. ACS Nano, 2013, 7(3):2422-2430. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[11] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[12] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[13] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 234
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 729
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||