CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1567-1574.DOI: 10.11949/j.issn.0438-1157.20181251
• Energy and environmental engineering • Previous Articles Next Articles
Xinbo WANG(),Yanping ZHANG,Xiuping LI,Rongxiang ZHAO()
Received:
2018-10-22
Revised:
2018-12-28
Online:
2019-04-05
Published:
2019-04-05
Contact:
Rongxiang ZHAO
通讯作者:
赵荣祥
作者简介:
<named-content content-type="corresp-name">王鑫博</named-content>(1993—),男,硕士研究生,<email>724581317@qq.com</email>|赵荣祥(1971—),男,博士,副教授,<email>zylhzrx@126.com</email>
基金资助:
CLC Number:
Xinbo WANG, Yanping ZHANG, Xiuping LI, Rongxiang ZHAO. Preparation of EMIES/nC9H10O2-based deep eutectic solvents and its oxidative desulfurization activity[J]. CIESC Journal, 2019, 70(4): 1567-1574.
王鑫博, 张延平, 李秀萍, 赵荣祥. EMIES/nC9H10O2基低共熔溶剂的制备及其氧化脱硫活性的研究[J]. 化工学报, 2019, 70(4): 1567-1574.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181251
Fig.5 Influence of different molar ratio of EMIES to C9H10O2 on desulfurization rate(Reaction condition:V oil= 5 ml, n(H2O2)/n(S)= 8, 1.5 g DESs, 50℃)
O/S | Sulfur removal/% |
---|---|
0 | 20.4 |
2 | 40.2 |
4 | 46.2 |
6 | 86.4 |
8 | 94.8 |
10 | 95.1 |
Table 1 Influence of various O/S molar ratio on desulfurization rate
O/S | Sulfur removal/% |
---|---|
0 | 20.4 |
2 | 40.2 |
4 | 46.2 |
6 | 86.4 |
8 | 94.8 |
10 | 95.1 |
Amount of DESs/g | Sulfur removal/% |
---|---|
0.5 | 74.0 |
1.0 | 83.0 |
1.5 | 94.8 |
2.0 | 93.2 |
Table 2 Influence of amount of DESs on desulfurization rate
Amount of DESs/g | Sulfur removal/% |
---|---|
0.5 | 74.0 |
1.0 | 83.0 |
1.5 | 94.8 |
2.0 | 93.2 |
Recyling times | Sulfur removal/% |
---|---|
1 | 94.8 |
2 | 94.0 |
3 | 92.6 |
4 | 92.0 |
5 | 90.2 |
6 | 89.3 |
Table 3 Influence of DESs recycling on sulfur removal
Recyling times | Sulfur removal/% |
---|---|
1 | 94.8 |
2 | 94.0 |
3 | 92.6 |
4 | 92.0 |
5 | 90.2 |
6 | 89.3 |
1 | Lü H , Li P , Deng C , et al . Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs) [J]. Chemical Communications, 2015, 51(53): 10703-10706. |
2 | Stanislaus A , Marafi A , Rana M S . Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production [J]. Catalysis Today, 2010, 153(1/2): 1-68. |
3 | Soleimani M , Bassi A , Margaritis A . Biodesulfurization of refractory organic sulfur compounds in fossil fuels [J]. Biotechnology Advances, 2007, 25(6): 570-596. |
4 | Ma X , Zhou A , Song C . A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption [J]. Catalysis Today, 2007, 123(1/2/3/4): 276-284. |
5 | Ko N H , Lee J S , Huh E S , et al . Extractive desulfurization using Fe-containing ionic liquids [J]. Energy & Fuels, 2008, 22(3): 1687-1690. |
6 | Park J G , Ko C H , Yi K B , et al . Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica [J]. Applied Catalysis B: Environmental, 2008, 81(3/4): 244-250. |
7 | Zhang S , Zhang Q , Zhang Z C . Extractive desulfurization and denitrogenation of fuels using ionic liquids [J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 614-622. |
8 | Wu Z , Xue Y , Zhang Y , et al . SnS2 nanosheet-based microstructures with high adsorption capabilities and visible light photocatalytic activities [J]. RSC Advances, 2015, 5(31): 24640-24648. |
9 | Abbott A P , Capper G , Davies D L , et al . Novel solvent properties of choline chloride/urea mixtures [J]. Chemical Communications, 2003, (1): 70-71. |
10 | Li C , Li D , Zou S , et al . Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents [J]. Green Chemistry, 2013, 15(10): 2793-2799. |
11 | Li J , Xiao H , Tang X , et al . Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization [J]. Energy & Fuels, 2016, 30(7): 5411-5418. |
12 | Gano Z S , Mjalli F S , Al-Wahaibi T , et al . Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design [J]. Chemical Engineering and Processing: Process Intensification, 2015, 93: 10-20. |
13 | Li C , Zhang J , Li Z , et al . Extraction desulfurization of fuels with ‘metal ions based deep eutectic solvents (MDESs) [J]. Green Chemistry, 2016, 18(13): 3789-3795. |
14 | Ekezie F G C , Sun D W , Cheng J H . Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: a review of latest developments [J]. Trends in Food Science & Technology, 2017, 67: 160-172. |
15 | Dai D , Wang L , Chen Q , et al . Selective oxidation of sulfides to sulfoxides catalysed by deep eutectic solvent with H2O2 [J]. Journal of Chemical Research, 2014, 38(3): 183-185. |
16 | Yin J , Wang J , Li Z , et al . Deep desulfurization of fuels based on an oxidation-extraction process with acidic deep eutectic solvents [J].Green Chemistry, 2015, 17(9): 4552-4559. |
17 | Kudtak B , Owczarek K , Namieśnik J . Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review [J]. Environmental Science and Pollution Research, 2015, 22(16): 11975-11992. |
18 | Leclercq L , Suisse I , Nowogrocki G , et al . Halide-free highly-pure imidazolium triflate ionic liquids: preparation and use in palladium-catalysed allylic alkylation [J]. Green Chemistry, 2007, 9(10): 1097-1103. |
19 | Jiang X , Nie Y , Li C , et al . Imidazolium-based alkylphosphate ionic liquids—a potential solvent for extractive desulfurization of fuel[J]. Fuel, 2008, 87(1): 79-84. |
20 | 邢鹏飞, 赵荣祥, 李秀萍, 等 . Bi2WO6 的制备及其在离子液体中的超深度氧化脱硫[J]. 中国炼油与石油化工, 2017, 19(1): 99-105. |
Xing P F , Zhao R X , Li X P , et al . Preparation of Bi2WO6 and its ultra-deep oxidative desulfurization performance in ionic liquids[J]. China Petroleum Processing and Petrochemical Technology, 2017, 19(1): 99-105. | |
21 | Wheeler J L , Pugh M K , Atkins S J , et al . Thermal breakdown kinetics of 1-ethyl-3-methylimidazolium ethylsulfate measured using quantitative infrared spectroscopy [J]. Applied Spectroscopy, 2017, 71(12): 2626-2631. |
22 | Dubey S , Bharmoria P , Gehlot P S , et al . 1-Ethyl-3-methylimidazolium diethylphosphate based extraction of bioplastic “polyhydroxyalkanoates” from bacteria: green and sustainable approach [J]. ACS Sustainable Chemistry & Engineering, 2017, 6(1): 766-773. |
23 | Stack R J , Cotta M A . Effect of 3-phenylpropanoic acid on growth of and cellulose utilization by cellulolytic ruminal bacteria [J]. Applied and Environmental Microbiology, 1986, 52(1): 209-210. |
24 | Wilkes J S , Zaworotko M J . Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. Journal of the Chemical Society, Chemical Communications, 1992, (13): 965-967 |
25 | Yuan B , Li Y , Yu F , et al . Benzylation with benzyl alcohol catalyzed by [ChCl][TfOH]2, a Brønsted acidic DES with reaction control self-separation performance [J]. Catalysis Letters, 2018, 148(7): 2133-2138. |
26 | Jiang Y , Zhu W , Li H , et al . Oxidative desulfurization of fuels catalyzed by Fenton‐like ionic liquids at room temperature [J]. ChemSusChem, 2011, 4(3): 399-403. |
27 | Mokhtar W N A W , Bakar W A W A , Ali R , et al . Deep desulfurization of model diesel by extraction with N,N-dimethylformamide: optimization by Box–Behnken design [J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1542-1548. |
28 | Li F , Liu R , Wen J , et al . Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid [J]. Green Chemistry, 2009, 11(6): 883-888. |
29 | Qiu L , Cheng Y , Yang C , et al . Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone [J]. RSC Advances, 2016, 6(21): 17036-17045. |
30 | Ede S R , Kundu S . Microwave synthesis of SnWO4 nanoassemblies on DNA scaffold: a novel material for high performance supercapacitor and as catalyst for butanol oxidation[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2321-2336. |
31 | Dong Y , Nie Y , Zhou Q . Highly efficient oxidative desulfurization of fuels by Lewis acidic ionic liquids based on iron chloride [J]. Chemical Engineering & Technology, 2013, 36(3): 435-442. |
32 | Chen J , Chen C , Zhang R , et al . Deep oxidative desulfurization catalyzed by an ionic liquid-type peroxotungsten catalyst [J]. RSC Advances, 2015, 5(33): 25904-25910. |
33 | Chen X , Song D , Asumana C , et al . Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride [J]. Journal of Molecular Catalysis A: Chemical, 2012, 359: 8-13. |
34 | Zhu W S , Li H , Gu Q Q , et al . Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids [J]. Journal of Molecular Catalysis A: Chemical, 2011, 336(1/2): 16-22. |
35 | Komintarachat C , Trakarnpruk W . Oxidative desulfurization using polyoxometalates [J]. Industrial & Engineering Chemistry Research, 2006, 45(6): 1853-1856. |
36 | Wei L , Zhou Z Y , Chen S P , et al . Electrochemically shape-controlled synthesis in deep eutectic solvents: triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity [J]. Chemical Communications, 2013, 49(95): 11152-11154. |
37 | Gao H , Guo C , Xing J , et al . Deep desulfurization of diesel oil with extraction using pyridinium-based ionic liquids [J]. Separation Science and Technology, 2012, 47(2): 325-330. |
38 | Mao C , Zhao R , Li X . Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil [J]. Fuel, 2017, 189: 400-407. |
39 | Zaid H F M , Chong F K , Mutalib M I A . Extractive deep desulfurization of diesel using choline chloride-glycerol eutectic-based ionic liquid as a green solvent [J]. Fuel, 2017, 192: 10-17. |
40 | Maggi R , Piscopo C G , Sartori G , et al . Supported sulfonic acids: metal-free catalysts for the oxidation of hydroquinones to benzoquinones with hydrogen peroxide [J]. Applied Catalysis A: General, 2012, 411: 146-152. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[9] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[10] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[11] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[12] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[13] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[14] |
Wan XU, Zhenbin CHEN, Huijuan ZHANG, Fangfang NIU, Ting HUO, Xingsheng LIU.
Study on synthesis, adsorption and desorption performance of linear temperature-sensitive segment polymer regulated intelligent |
[15] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||