[1] |
Jahanshahi Javaran E, Gandjalikhan Nassab S A, Jafari S. Thermal analysis of a 2-D heat recovery system using porous media including lattice Boltzmann simulation of fluid flow[J].Int.J.Therm.Sci., 2010, 49(6):1031-1041
|
[2] |
Yoshida H, Nagaoka M. Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation[J].J. Comput.Phys., 2010, 229(20):7774-7795
|
[3] |
Yu Boming(郁伯铭).Advances of fractal analysis of transport properties for porous media[J].Advances in Mechanics(力学进展),2003, 33(3):333-340
|
[4] |
Hilfer R.Review on scale dependent characterization of the microstructure of porous media[J].Transport Porous Med., 2002, 46(2/3):373-390
|
[5] |
Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[J].Annu. Rev. Fluid. Mech., 1998, 30(1):329-364
|
[6] |
Zhang Ting(张婷), Guo Zhaoli(郭照立), Chai Zhenhua(柴振华), Shi Baochang(施保昌).Lattice Boltzmann method for simulating carbon dioxide capture with Ca-based sorbent[J].CIESC Journal(化工学报),2012,63(S1):165-171
|
[7] |
Wang Guanqing(王关晴), Luo Dan(罗丹), Ding Ning(丁宁), Huang Xuefeng(黄雪峰), Xu Jiangrong(徐江荣). Two-dimensional combustion flame profiles in porous media with ultra low-calorific gases[J]. CIESC Journal(化工学报),2012, 63(6):1893-1901
|
[8] |
Nie X, Doolen G D, Chen S. Lattice-Boltzmann simulations of fluid flows in MEMS[J].J. Stat. Phys., 2002, 107(1/2):367-383
|
[9] |
Kang Q J, Lichtner P C, Janecky C R. Lattice Boltzmann method for reacting flow in porous media[J].Adv. Appl. Mech., 2010, 2(5):545-563
|
[10] |
Succi S, Foti E, Higuera F. Three-dimensional flows in complex geometries with the lattice Boltzmann method[J].Europhys. Lett., 1989, 10(5):433-438
|
[11] |
Martys N S, Chen H. Simulation of multicomponent fluids [JP3]in complex three-dimensional geometries by the lattice Boltzmann method[J].Phys. Rev. E, 1996, 53(1):743-750
|
[12] |
Guyer R A, McCall K R. Lattice Boltzmann description of magnetization in porous media[J].Phys. Rev. B, 2000, 62(6):3674-3688
|
[13] |
Ginzburg I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation[J].Adv. Water Resour., 2005, 28(11):1171-1195
|
[14] |
Servan-Camas B, Tsai F T-C. Lattice Boltzmann method with two relaxation times for advection-diffusion equation:third order analysis and stability analysis[J].Adv. Water Resour., 2008, 31(8):1113-1126
|
[15] |
Guo Z L, Zheng C G, Shi B C. An extrapolation method for boundary conditions in lattice Boltzmann method[J].Phys. Fluids, 2002, 14(6):2007-2010
|
[16] |
Petersen E E. Diffusion in a pore of varying cross section[J].AIChE J., 1958, 4(3):343-345
|
[17] |
Shen L, Chen Z. Critical review of the impact of tortuosity on diffusion[J].Chem. Eng. Sci., 2007, 62(14):3748-3755
|
[18] |
Sweerts J P, Kelly C A, Rudd J W, Hesslein R, Cappenberg T E. Similarity of whole-sediment molecular diffusion coefficients in freshwater sediments of low and high porosity[J].Limnolo Oceanogr., 1991, 36(2):335-342
|
[19] |
Iversen N, Jorgensen B B. Diffusion coefficients of sulfate and methane in marine sediments:influence of porosity[J].Geochim. Cosmochim. Acta, 1993, 57(3):571-578
|
[20] |
Wu M, Xiao F, Johnson-Paben R M, Retterer S T, Yin X, Neeves K B. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation[J].Lab Chip., 2012, 12(2):253-361
|