CIESC Journal ›› 2014, Vol. 65 ›› Issue (1): 22-31.DOI: 10.3969/j.issn.0438-1157.2014.01.003
Previous Articles Next Articles
SUI Zhijun1, LI Ping1, ZHOU Jinghong1, ZHU Yi'an1, De Chen2, ZHOU Xinggui1
Received:
2013-06-27
Revised:
2013-08-23
Online:
2014-01-05
Published:
2014-01-05
Supported by:
supported by the National Basic Research Program of China (2012CB720500) and the National Natural Science Foundation of China(21106047, 21276077).
隋志军1, 李平1, 周静红1, 朱贻安1, De Chen2, 周兴贵1
通讯作者:
周兴贵
作者简介:
隋志军(1974-),男,博士,副教授。
基金资助:
国家重点基础研究发展计划项目(2012CB720500);国家自然科学基金项目(21106047,21276077)。
CLC Number:
SUI Zhijun, LI Ping, ZHOU Jinghong, ZHU Yi'an, De Chen, ZHOU Xinggui. Manipulating microstructural properties of carbon nanofibers and their applications in catalysis[J]. CIESC Journal, 2014, 65(1): 22-31.
隋志军, 李平, 周静红, 朱贻安, De Chen, 周兴贵. 纳米碳纤维的微观结构调控与催化作用[J]. 化工学报, 2014, 65(1): 22-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.01.003
[1] | de Jong K P, Geus J W. Carbon nanofibers:catalytic synthesis and applications[J].Catalysis Reviews-Science and Engineering, 2000, 42(4):481-510 |
[2] | Tessonnier J P, Su D S. Recent progress on the growth mechanism of carbon nanotubes: a review[J]. ChemSusChem, 2011, 4(7):824-847 |
[3] | Li Y D, Li D X, Wang G W. Methane decomposition to COx-free hydrogen and nano-carbon material on group 8—10 base metal catalysts:a review[J]. Catalysis Today, 2011, 162(1):1-48 |
[4] | Tibbetts G G, Lake M L, Strong K L, Rice B P. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites[J]. Composites Science and Technology, 2007, 67(7/8): 1709-1718 |
[5] | Ledoux M J, Vieira R, Pham-Huu C, Keller N. New catalytic phenomena on nanostructured (fibers and tubes) catalysts[J]. Journal of Catalysis, 2003, 216(1/2):333-342 |
[6] | Bitter J H. Nanostructured carbons in catalysis a janus material—industrial applicability and fundamental insights[J]. Journal of Materials Chemistry, 2010, 20(35):7312-7321 |
[7] | Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlogl R. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem, 2010, 3(2):169-180 |
[8] | Zhu J, Holmen A, Chen D. Carbon nanomaterials in catalysis:proton affinity, chemical and electronic properties, and their catalytic consequences[J].Chemcatchem, 2013, 5(2):378-401 |
[9] | Rodriguez N M, Chambers A, Baker R T K. Catalytic engineering of carbon nanostructures[J].Langmuir, 1995, 11(10):3862-3866 |
[10] | Li Zhentao(李振涛), Dong Qiang(董强), Liu Hong(刘红), Qiu Jieshan(邱介山). Preparation and characterization of single-wailed carbon nanotubes from taixi anthracite[J].CIESC Journal, 2010, 61(4):1040-1046 |
[11] | Inagaki M, Yang Y, Kang F Y. Carbon nanofibers prepared via electrospinning[J]. Advanced Materials, 2012, 24(19):2547-2566 |
[12] | Chesnokov V V, Buyanov R A. The formation of carbon filaments upon decomposition of hydrocarbons catalysed by iron group metals and their alloys[J].Uspekhi Khimii, 2000, 69(7):675-692 |
[13] | Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon, 2009, 47(1):2-22 |
[14] | Zhou J H, Sui Z J, Li P, Chen D, Dal Y C, Yuan W K. Structural characterization of carbon nanofibers formed from different carbon-containing gases[J]. Carbon, 2006, 44(15):3255-3262 |
[15] | Zhao T J, Zhu Y, Li P, Chen D, Dai Y C, Yuan W K, Holmen A. Effect of active metal composition on the yield and microstructure of carbon nanofiber[J].Chinese Journal of Catalysis, 2004, 25(10):829-833 |
[16] | Lu W X, Sui Z J, Zhou J H, Li P, Chen D, Zhou X G. Kinetically controlled synthesis of carbon nanofibers with different morphologies by catalytic CO disproportionation over iron catalyst[J]. Chemical Engineering Science, 2010, 65(1):193-200 |
[17] | Sui Z J, Sun Y F, Zhou J H, Li P, Chen D, Zhou X G. Catalytic vapor decomposition of methane over nickle catalyst:growth rate and the corresponding microstructures of carbon nanofibers[J]. Journal of Chemical Engineering of Japan, 2009, 42(Suppl. 1):204-211 |
[18] | Duan X Z, Qian G, Zhou X G, Sui Z J, Chen D, Yuan W K. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition[J]. Applied Catalysis B-Environmental, 2011, 101(3/4):189-196 |
[19] | Duan X Z, Qian G, Zhou J H, Zhou X G, Chen D, Yuan W K. Flat interface mediated synthesis of platelet carbon nanofibers on Fe nanoparticles[J]. Catalysis Today, 2012, 186(1):48-53 |
[20] | Ji J, Duan X Z, Qian G, Zhou X G, Chen D, Yuan W K. In situ production of Ni catalysts at the tips of carbon nanofibers and application in catalytic ammonia decomposition[J]. Industrial & Engineering Chemistry Research, 2013, 52(5):1854-1858 |
[21] | Duan X Z, Ji J, Qian G, Fan C, Zhu Y, Zhou X G, Chen D, Yuan W K. Ammonia decomposition on Fe(110), Co(111) and Ni(111) surfaces:a density functional theory study[J]. Journal of Molecular Catalysis A-Chemical, 2012, 357:81-86 |
[22] | Christensen K O, Chen D, Lodeng R, Holmen A. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming[J]. Applied Catalysis A-General, 2006, 314(1): 9-22 |
[23] | Zhu Y A, Dai Y C, Chen D, Yuan W K. First-principles study of C chemisorption and diffusion on the surface and in the subsurfaces of Ni(111) during the growth of carbon nanofibers[J]. Surface Science, 2007, 601(5):1319-1325 |
[24] | Zhu Y A, Dai Y C, Chen D, Yuan W K. First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers[J]. Carbon, 2007, 45(1):21-27 |
[25] | Zhu Y A, Zhou X G, Chen D, Yuan W K. First-principles study of C adsorption and diffusion on the surfaces and in the subsurfaces of nonreconstructed and reconstructed Ni(100)[J].Journal of Physical Chemistry C, 2007, 111(8):3447-3453 |
[26] | Helveg S, Lopez-Cartes C, Sehested J, Hansen P L, Clausen B S, Rostrup-Nielsen J R, Abild-Pedersen F, Norskov J K. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427(6973): 426-429 |
[27] | Sun Y F, Sui Z J, Zhou J H, Li P, Zhou X G, Chen D. Catalytic decomposition of methane over supported Ni catalysts with different particle sizes[J].Asia-Pacific Journal of Chemical Engineering, 2009, 4(5):814-820 |
[28] | Lu W X, Sui Z J, Zhou J H, Li P, Zhou X G, Chen D. Effect of hydrogen on the synthesis of carbon nanofibers by Co disproportionation on ultrafine Fe3O4[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(5):590-595 |
[29] | Pan X L, Bao X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts of Chemical Research, 2011, 44(8):553-562 |
[30] | Serp P, Castillejos E. Catalysis in carbon nanotubes[J]. Chemcatchem, 2010, 2(1):41-47 |
[31] | Cheng H Y, Zhu Y A, Sui Z J, Zhou X G, Chen D. Modeling of fishbone-type carbon nanofibers with cone-helix structures[J]. Carbon, 2012, 50(12):4359-4372 |
[32] | Zhu Y A, Sui Z J, Zhao T J, Dai Y C, Cheng Z M, Yuan W K. Modeling of fishbone-type carbon nanofibers:a theoretical study[J]. Carbon, 2005, 43(8):1694-1699 |
[33] | Zhou J H, Sui Z J, Zhu J, Li P, De C, Dai Y C, Yuan W K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4):785-796 |
[34] | Zhu J, Zhao T J, Kvande I, Chen D, Zhou X G, Yuan W K. Carbon nanofiber-supported Pd catalysts for Heck reaction:effects of support interaction[J]. Chinese Journal of Catalysis, 2008, 29(11):1145-1151 |
[35] | Kvande I, Zhu J, Zhao T J, Hammer N, Ronning M, Raaen S, Walmsley J C, Chen D. Importance of oxygen-free edge and defect sites for the immobilization of colloidal Pt oxide particles with implications for the preparation of CNF-supported catalysts[J]. Journal of Physical Chemistry C, 2010, 114(4):1752-1762 |
[36] | Tessonnier J P, Pesant L, Ehret G, Ledoux M J, Pham-Huu C. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde[J]. Applied Catalysis A-General, 2005, 288(1/2):203-210 |
[37] | Li C H, Yu Z X, Yao K F, Ji S F, Liang J. Nitrobenzene hydrogenation with carbon nanotube-supported platinum catalyst under mild conditions[J].Journal of Molecular Catalysis A-Chemical, 2005, 226(1):101-105 |
[38] | Zhu J, Zhou J H, Zhao T J, Zhou X G, Chen D, Yuan W K. Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction[J]. Applied Catalysis A-General, 2009, 352(1/2):243-250 |
[39] | Zhao L, Zhou J H, Sui Z J, Zhou X G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst[J]. Chemical Engineering Science, 2010, 65(1):30-35 |
[40] | Wang H, Zhu L, Peng S, Peng F, Yu H, Yang J. High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy, 2012, 37(1):192-196 |
[41] | Deng W, Liu M, Tan X, Zhang Q, Wang Y. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts[J]. Journal of Catalysis, 2010, 271(1):22-32 |
[42] | Zhou Q, Li P, Wang X L, Zhou X G, Yang D J, Chen D. Preparation of CNF-supported Pt catalysts for hydrogen evolution from decalin[J]. Materials Chemistry and Physics, 2011, 126(1/2):41-45 |
[43] | Antolini E. Carbon supports for low-temperature fuel cell catalysts[J]. Applied Catalysis B-Environmental, 2009, 88(1/2):1-24 |
[44] | Cheng H M, Yang Q H, Liu C. Hydrogen storage in carbon nanotubes[J]. Carbon, 2001, 39(10):1447-1454 |
[45] | Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—a review[J]. Journal of Power Sources, 2012, 208:96-119 |
[46] | Pham-Huu C, Keller N, Charbonniere L J, Ziessle R, Ledoux M J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C C bonds[J]. Chemical Communications, 2000(19):1871-1872 |
[47] | Zhou J H, Sui Z J, Li P, Dai Y C, Yuan W K. The wettability of carbon nanofibers[J]. New Carbon Materials, 2006, 21(4):331-336 |
[48] | Radovic L R, Bockrath B. On the chemical nature of graphene edges:origin of stability and potential for magnetism in carbon materials[J]. Journal of the American Chemical Society, 2005, 127(16): 5917-5927 |
[49] | Zhao T J, De C, Dai Y C, Yuan W K, Holmen A. The effect of graphitic platelet orientation on the properties of carbon nanofiber supported Pd catalysts prepared by ion exchange[J]. Topics in Catalysis, 2007, 45(1/2/3/4):87-91 |
[50] | Sanz-Navarro C F, Astrand P O, Chen D, Ronning M, van Duin A C T, Goddard W A Ⅲ. Molecular dynamics simulations of metal clusters supported on fishbone carbon nanofibers[J]. Journal of Physical Chemistry C, 2010, 114(8):3522-3530 |
[51] | Sanz-Navarro C F, Astrand P O, Chen D, Ronning M, van Duin A C T, Jacob T, Goddard W A Ⅲ. Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets[J]. Journal of Physical Chemistry A, 2008, 112(7):1392-1402 |
[52] | Sanz-Navarro C F, Astrand P O, Chen D, Ronning M, van Duin A C T, Mueller J E, Goddard W A Ⅲ. Molecular dynamics simulations of carbon-supported Ni clusters using the reax reactive force field[J]. Journal of Physical Chemistry C, 2008, 112(33):12663-12668 |
[53] | Zhao T J, Chen D, Dai Y C, Yuan W K, Holmen A. Synthesis of dimethyl oxalate from Co and CH3ONO on carbon nanofiber supported palladium catalysts[J].Industrial & Engineering Chemistry Research, 2004, 43(16):4595-4601 |
[54] | Torres Galvis H M, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J].Science (New York, NY), 2012, 335(6070):835-838 |
[55] | Zhou J H, Sui Z J, Zhou X G, Yuan W K. Palladium catalysts supported on fishbone carbon nanofibers from different carbon sources[J].Chinese Journal of Catalysis, 2008, 29(11):1107-1112 |
[56] | Kochubey D I, Chesnokov V V, Malykhin S E. Evidence for atomically dispersed Pd in catalysts supported on carbon nanofibers[J].Carbon, 2012, 50(8):2782-2787 |
[57] | Park C, Baker R T K. Catalytic behavior of graphite nanofiber supported nickel particles(Ⅲ):The effect of chemical blocking on the performance of the system[J]. Journal of Physical Chemistry B, 1999, 103(13):2453-2459 |
[58] | Keller N, Maksimova N I, Roddatis V V, Schur M, Mestl G, Butenko Y V, Kuznetsov V L, Schlogl R. The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene[J].Angewandte Chemie-International Edition, 2002, 41(11):1885-1888 |
[59] | Zhang J, Liu X, Blume R, Zhang A H, Schlogl R, Su D S. Surface- modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J].Science, 2008, 322(5898):73-77 |
[60] | Sui Z J, Zhou J H, Dai Y C, Yuan W K. Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers[J].Catalysis Today, 2005, 106(1/2/3/4):90-94 |
[61] | Liu X, Frank B, Zhang W, Cotter T P, Schlogl R, Su D S. Carbon-catalyzed oxidative dehydrogenation of n-butane:selective site formation during sp(3)-to-sp(2) lattice rearrangement[J]. Angewandte Chemie-International Edition, 2011, 50(14):3318-3322 |
[62] | Zhao T J, Sun W Z, Gu X Y, Ronning M, Chen D, Dai Y C, Yuan W K, Holmen A. Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene[J].Applied Catalysis A-General, 2007, 323:135-146 |
[63] | Zhang J, Su D S, Zhang A H, Wang D, Schlogl R, Hebert C. Nanocarbon as robust catalyst:mechanistic insight into carbon- mediated catalysis[J].Angewandte Chemie-International Edition, 2007, 46(38):7319-7323 |
[64] | Tessonnier J P, Villa A, Majoulet O, Su D S, Schlogl R. Defect- mediated functionalization of carbon nanotubes as a route to design single-site basic heterogeneous catalysts for biomass conversion[J]. Angewandte Chemie-International Edition, 2009, 48(35):6543-6546 |
[65] | Villa A, Tessonnier J P, Majoulet O, Su D S, Schlogl R. Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides[J]. Chemical Communications, 2009(29):4405-4407 |
[66] | Pham-Huu C, Ledoux M J. Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials[J].Topics in Catalysis, 2006, 40(1/2/3/4):49-63 |
[67] | Li P, Zhao T J, Zhou J H, Sui Z J, Dai Y C, Yuan W K. Characterization of carbon nanofiber composites synthesized by shaping process[J].Carbon, 2005, 43(13):2701-2710 |
[68] | Li P, Li T, Zhou J H, Sui Z J, Dai Y C, Yuan W K, Chen D. Synthesis of carbon nanofiber/graphite-felt composite as a catalyst[J]. Microporous and Mesoporous Materials, 2006, 95(1/2/3):1-7 |
[69] | Vieira R, Bernhardt P, Ledoux M J, Pham-Huu C. Performance comparison of IR/CNF and IR/Al2O3 catalysts in a 2 n hydrazine microthruster[J].Catalysis Letters, 2005, 99(3/4):177-180 |
[70] | Cao Y J, Li P, Zhou J H, Sui Z J, Zhou X G. Hydrodynamics and mass transfer in carbon-nanofiber/graphite-felt composite under two-phase flow conditions[J]. Chemical Engineering and Processing, 2011, 50(10):1108-1114 |
[71] | Cao Y J, Li P, Zhou J H, Sui Z J, Zhou X G. Pressure drop and residence time distribution in carbon-nanofiber/graphite-felt composite for single liquid-phase-flow[J]. Industrial & Engineering Chemistry Research, 2011, 50(15):9431-9436 |
[72] | Cao Y J, Li P, Zhou J H, Sui Z J, Zhou X G, Yuan W K. Pressure drop of structured packing of carbon nanofiber composite[J]. Industrial & Engineering Chemistry Research, 2010, 49(8):3944-3951 |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[6] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||