[1] |
Czaja A, Trukhan N, Muller U. Industrial applications of metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1284-1293
|
[2] |
Meilikhov M, Yusenko K, Esken D, Turner S, Tendeloo G, Fischer R. Metals@MOFs - loading MOFs with metal nanoparticles for hybrid functions [J]. Eur. J. Inorg. Chem., 2010, 24: 3701-3714
|
[3] |
Jiang H L, Akita T, Tshida T, Haruta M, Xu X. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework [J]. J. Am. Chem. Soc., 2011, 133: 1304-1306
|
[4] |
Gu X J, Lu Z H, Jiang H L, Akita T, Xu X. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage [J]. J. Am. Chem. Soc., 2011, 133: 11822-11825
|
[5] |
Esken D, Turner S, Lebedev O, Tendeloo G, Fischer R. Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks, ZIFs [J]. Chem. Mater., 2010, 22: 6393-6401
|
[6] |
Lu G, Li S Z, Farha O, Hauser B, Qi X Y, Wang Y, Wang X, Han S Y, Liu X G, Duchene J, Zhang H, Zhang Q C, Chen X D, Ma J, Loo S, Wei W, Yang Y H, Hupp J, Huo F W. Imparting functionality to a metal-organic framework material by controlled encapsulation of nanoparticles [J]. Nat. Chem., 2012, 4: 310-316
|
[7] |
Li P Z, Aranishi K, Xu X. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane [J]. Chem. Commun., 2012, 48: 3173-3175
|
[8] |
EI-Shall M, Abdelsayed V, Khder A, Hassan H, EI-Kaderi H, Rrich T. Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101 [J]. J. Mater. Chem., 2009, 19: 7625-7631
|
[9] |
Jiang H L, Qu Q. Porous metal-organic frameworks as platforms for functional applications [J]. Chem. Commun., 2011, 47: 3351-3370
|
[10] |
Liu H L, Liu Y L, Li Y W, Tang Z Y, Jiang H F. Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols [J]. J. Phys. Chem. C, 2010, 114: 13362-13369
|
[11] |
Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework [J]. J. Am. Chem. Soc., 2009, 131: 11302-11303
|
[12] |
Lee J, Farha O, Roberts J, Scheidt K, Nguyen S, Hupp J. Metal- organic framework materials as catalysts [J]. Chem. Soc. Rev., 2009, 38: 1450-1459
|
[13] |
Yoon M, Srirambalaji R, Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis [J]. Chem. Rev., 2012, 112: 1196-1231
|
[14] |
Park K, Ni Z, Cote A, Choi J, Huang R, Uribe-Romo F, Chae H, Keeffe M, Yaghi O. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc. Natl. Acad. Sci. USA, 2006, 103: 10186-10191
|
[15] |
Phan A, Doonan C, Uribe-Romo F, Knobler C, Keeffe M, Yaghi O. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks [J]. Acc. Chem. Res., 2010, 43: 58-67
|
[16] |
Mayo S, Olafson B, Goddard Ⅲ W. DREIDING: a generic force field for molecular simulations [J]. J. Phys. Chem., 1990, 94: 8897-8809
|
[17] |
Rappé A, Casewit C, Colwell K, Goddard Ⅲ W, Skiff W. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. J. Am. Chem. Soc., 1992, 114: 10024-10039
|
[18] |
Yang Q, Wiersum A D, Llewellyn P L, Guillerm V, Serre C, Maurin G. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration [J]. Chem. Commun., 2011, 47: 9603-9605
|
[19] |
Huang H L, Zhang W J, Liu D H, Liu B, Chen G J, Zhong C L. Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study [J]. Chem. Eng. Sci., 2011, 66: 6297-6305
|
[20] |
Zheng C C, Liu D H, Yang Q Y, Zhong C L, Mi J G. Computational study on the influences of framework charges on CO2 uptake in metal-organic frameworks [J]. Ind. Eng. Chem. Res., 2009, 48: 10479-10484
|
[21] |
Liu Y, Liu H L, Hu Y, Jiang J W. Density functional theory for adsorption of gas mixtures in metal-organic frameworks [J]. J. Phys. Chem. B, 2010, 114: 2820-2827
|
[22] |
Zhu Y J, Zhou J H, Hu J, Liu H L, Hu Y. Computer simulation of gas adsorption in modified COF-108: the impregnation of C60 into COF-108 [J]. Mol. Simulat., 2012, 38: 595-603
|
[23] |
Liu B, Sun C Y, Chen G J. Molecular simulation studies of separation of CH4/H2 mixture in metal-organic frameworks with interpenetration and mixed-ligand [J]. Chem. Eng. Sci., 2011, 66: 3012-3019
|
[24] |
Materials Studio[M]. 4.3V. San Diego, CA: Accelrys, Inc., 2008
|
[25] |
Psofogiannakis G, Froudakis G. Theoretical explanation of hydrogen spillover in metal-organic frameworks [J]. J. Phys. Chem. C, 2011, 115: 4047-4053
|
[26] |
Hou X J, Li H Q. Unraveling the high uptake and selectivity of CO2 in the zeolitic imidazolate frameworks ZIF-68 and ZIF-69 [J]. J. Phys. Chem. C, 2010, 114: 13501-13508
|
[27] |
Wang J G, Liu C J, Fang Z P, Liu Y, Han Z Q. DFT study of structural and electronic properties of PdO/HZSM-5 [J]. J. Phys. Chem. B, 2004, 108: 1653-1659
|
[28] |
Hirsch T, Ojamae L. Quantum-chemical and force-field investigations of ice Ih: computation of proton-ordered structures and prediction of their lattice energies [J]. J. Phys. Chem. B, 2004, 108: 15856-15864
|
[29] |
Benco L, Bucko T, Hafner J, Toulhoat, H. Ab initio simulation of Lewis sites in mordenite and comparative study of the strength of active sites via CO adsorption [J]. J. Phys. Chem. B, 2004, 108: 13656- 13666
|
[30] |
Sun B Z, Chen W K, Zheng J D, Lu C H. Roles of oxygen vacancy in the adsorption properties of CO and NO on Cu2O(1 1 1) surface: results of a first-principles study [J]. Appl. Surf. Sci., 2008, 255: 3141-3148
|
[31] |
Zhang R, Ling L, Li Z, Wang B. Solvent effects on Cu2O(1 1 1) surface properties and CO adsorption on Cu2O(1 1 1) surface: a DFT study [J]. Appl. Catal. A-Gen.,2011, 400: 142-147
|
[32] |
Chizallet C, Lazare L, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud A, Bats N. Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations [J]. J. Am. Chem. Soc., 2010, 132: 12365-12377
|
[33] |
Liu D H, Zhong C L. Characterization of Lewis acid sites in metal-organic frameworks using density functional theory [J]. J. Phys. Chem. Lett., 2010, 1: 97-101
|
[34] |
Treesukol P, Srisuk K, Limtrakul J, Truong T. Nature of the metal-support interaction in bifunctional catalytic Pt/H-ZSM-5 zeolite [J]. J. Phys. Chem. B, 2005, 109: 11940-11945
|
[35] |
Schroder F, Eshen D, Cokoja M, Berg M, Lebedew O, Tendeloo G, Walaszek B, Buntkowsky G, Limbach H, Chaudret B, Fischer R. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids [J]. J. Am. Chem. Soc., 2008, 130: 6119-6130
|
[36] |
Jiang Ling(江陵), Wang Guichang(王贵昌), Guan Naijia(关乃佳), Wu Yang(吴杨), Cai Zunsheng(蔡遵生), Pan Yinming(潘荫明), Zhao Xuezhuang(赵学庄), Huang Wei(黄伟), Li Yongwang(李永旺), Sun Yuhan(孙予罕), Zhong Bing(钟炳). DFT studies of CO adsorption and activation on some transition metal surfaces [J]. Acta Phys. -Chim. Sin. (物理化学学报), 2003, 19: 393-397
|
[37] |
Aray Y, Rodriguez J, Coll S, Rodriguez-Arias E, Vega D. Nature of the Lewis acid sites on molybdenum and ruthenium sulfides: an electrostatic potential study [J]. J. Phys. Chem. B, 2005, 109: 23564-23570
|
[38] |
Aray Y, Rodriguez J, Vidal A, Coll S. Nature of the NiMoS catalyst edge sites: an atom in molecules theory and electrostatic potential studies [J]. J. Mol. Catal. A: Chem., 2007, 271: 105-116
|
[39] |
Yin Ming(殷明), Shu Yuanjie(舒远杰), Xiong Ying(熊鹰), Luo Shikai(罗世凯), Wang Ping(王苹), Long Xinping(龙新平), Zhu Zuliang(朱祖良). Theoretical studies on structures and properties of nitroimidazole compounds [J]. Acta. Chim. Sinica(化学学报), 2008, 66: 2117-2123
|