[1] |
Watts R G. Global Warming and the Future of the Earth[M]. Denver: Morgan & Claypool Publishers, 2007
|
[2] |
Federal Ministry of Food-Agriculture, Consumer Protection G. Bioenergy in Germany: Facts and Figures[M]. Germany: FNR, 2012
|
[3] |
Murray J J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1294-1314
|
[4] |
Yang Q Y, Liu D H, Zhong C L, Li J R. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chem. Rev., 2013, 113(10): 8261-8323
|
[5] |
Li J R, Kuppler R J,Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1477-1504
|
[6] |
Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Synthesis and gas sorption properties of a metal-azolium framework (MAF) material[J]. Chem. Soc. Rev., 2009, 38: 1450-1459
|
[7] |
Plant D F, Maurin G, Deroche I, Gaberova L, Llewellyn P L. CO2 adsorption in alkali cation exchanged Y faujasites:a quantum chemical study compared to experiments[J]. Chem. Phys. Lett., 2006, 426(4/5/6): 387-392
|
[8] |
Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angew. Chem. Int. Ed., 2007, 46(40): 7548-7558
|
[9] |
Horike S, Shimomura S, Kitagawa S. Soft porous crystals[J]. Nature Chemistry, 2009, 1: 695-704
|
[10] |
Serre C, Millange F, Surblé S, Férey G. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units [J]. Angew. Chem. Int. Ed., 2004, 43(46): 6286-6289
|
[11] |
Millange F, Serre C, Guillou N, Férey G, Walton R. Structural effects of solvents on the breathing of metal-organic frameworks: an in situ diffraction study[J]. Angew. Chem. Int. Ed., 2008, 47(22): 4100-4105
|
[12] |
Férey G, Latroche M, Serre C, Millange F, Loiseau T, Annick P-G. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53[J]. Chem. Commun., 2003(24):2976-2977
|
[13] |
Alexander V, Coudert F, Boutm A, Fuchs A H. Stress-based model for the breathing of metal-organic frameworks [J]. J. Phys. Chem. Lett., 2010, 1(1): 445-449
|
[14] |
David S C, Furio C, Boutm A. Stress-based model for the breathing of metal-organic framework CrMIL-53: force-field simulation and electronic structure analysis[J]. J. Phys. Chem. C, 2009, 113(2): 544-552
|
[15] |
Wang Z Q, Cohen S M. Postsynthetic modification of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1315-1329
|
[16] |
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472
|
[17] |
Zhao Y, Wu H, Emge T J, Gong Q, Nijem N, Chabal Y J, Kong L, Langreth D C, Liu H, Zeng H, Li J. Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures[J]. Chem. Eur. J., 2011, 17(18): 5101-5109
|
[18] |
Kristine K T, Cohen S M. Postsynthetic modification of metal-organic frameworks—a progress report[J]. Chem. Soc. Rev., 2011, 40: 498-519
|
[19] |
Lin Y C, Kong C L, Chen L. Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture[J]. RSC Advances, 2012, 2: 6417-6419
|
[20] |
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O' Keeffe M,Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472
|
[21] |
Demessence A, D'Alessandro D M, Foo M L, Long J R. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine[J]. J. Am. Chem. Soc., 2009, 131: 8784-8786
|
[22] |
McDonald M M, D'Alessandro D M, Krishnac R, Long J R. Enhanced carbon dioxide capture upon incorporation of N,N-dimethylethylenediamine in the metal-organic framework CuBTTri[J]. Chem. Sci., 2011, 2: 2022-2028
|
[23] |
Montoro C, García E, Calero S, Pérez-Fernández M A, López A L, Barea E, Navarro J A R. Functionalisation of MOF open metal sites with pendant amines for CO2 capture[J]. J. Mater. Chem., 2012, 22: 10155-10158
|
[24] |
Liu D F, Wu Y B, Xia Q B, Li Z, Xi H X. Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8[J]. Adsorption, 2013, 19: 25-37
|
[25] |
Thompson J A, Brunelli N A, Ryan P L, Johnson J R, Jones C W, Nair S. Tunable CO2 adsorbents by mixed-linker synthesis and postsynthetic modification of zeolitic imidazolate frameworks[J]. J. Phys. Chem. C, 2013, 117(16): 8198-8207
|
[26] |
Lin Y C, Yan Q J, Kong C L,Chen L. Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture[J]. Scientific Reports, 2013, 3: 1859-1866
|
[27] |
Mishra P, Edubilli S, Uppara H P, Mandal B, Gumma S. Effect of adsorbent history on adsorption characteristics of MIL-53(Al) metal organic framework[J]. Langmuir, 2013, 29: 12162-12167
|
[28] |
Ahnfeldt T, Gunzelmann D, Loiseau T, Hirsemann D, Senker J, Fe′rey G, Stock N. Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology[J]. Inorganic Chemistry, 2009, 48(7): 3057-3064
|
[29] |
Hwang Y K, Hong D-Y, Chang J-S, Jhung S-H, Seo Y-K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation[J]. Angew. Chem. Int. Ed., 2008, 47: 4144-4148
|