CIESC Journal ›› 2014, Vol. 65 ›› Issue (7): 2657-2667.DOI: 10.3969/j.issn.0438-1157.2014.07.025
Previous Articles Next Articles
LI Bo, SU Dangsheng
Received:
2014-04-01
Revised:
2014-04-13
Online:
2014-07-05
Published:
2014-07-05
Supported by:
supported by the Institute of Metal Research (Y3NBA211A1), the National Natural Science Foundation of China (21133010, 51221264, 21261160487), the National Basic Research Program of China (2011CBA00504) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA09030103).
李波, 苏党生
通讯作者:
苏党生
基金资助:
中国科学院金属研究所资助项目(Y3NBA211A1);国家自然科学基金项目(21133010,51221264,21261160487);国家重点基础研究发展计划项目(2011CBA00504);中国科学院战略先导项目(XDA09030103)。
CLC Number:
LI Bo, SU Dangsheng. Computational exploration on effects of heteroatom doping for nanostructured carbon catalysts[J]. CIESC Journal, 2014, 65(7): 2657-2667.
李波, 苏党生. 利用杂原子调控纳米碳材料催化剂催化能力的初步探索[J]. 化工学报, 2014, 65(7): 2657-2667.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.07.025
[1] | Serp P, Figueiredo J L. Carbon Materials for Catalysis[M]. Hoboken: Wiley, 2009 |
[2] | Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catal. Sci. Technol., 2012, 2: 54-75 |
[3] | Zhu J, Holmen A, Chen D. Carbon nanomaterials in catalysis: proton affinity, chemical and electronic properties, and their catalytic consequences[J]. ChemCatChem, 2013, 5: 378-401 |
[4] | Figueiredo J L, Pereira M F R. The role of surface chemistry in catalysis with carbons[J]. Catal. Today, 2010, 150: 2-7 |
[5] | Su D S, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts[J]. Chem. Rev., 2013, 113: 5782-5816 |
[6] | Bitter J H. Nanostructured carbons in catalysis a Janus material-industrial applicability and fundamental insights[J]. J. Mater. Chem., 2010, 20: 7312-7321 |
[7] | Su D S, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlögl R. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem, 2010, 3: 169-180 |
[8] | Yu D, Nagelli E, Du F, Dai L. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. J. Phys. Chem. Lett., 2010, 1: 2165-2173 |
[9] | Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su D S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J]. Science, 2008, 322: 73-77 |
[10] | Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2: 781-794 |
[11] | Liu H T, Liu Y Q, Zhu D B. Chemical doping of graphene[J]. J. Mater. Chem., 2011, 21: 3335-3345 |
[12] | Ewels C P, Glerup M. Nitrogen doping in carbon nanotubes[J]. J. Nanosci. Nanotech., 2005, 5: 1345-1363 |
[13] | Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T. The doping of carbon nanotubes with nitrogen and their potential applications[J]. Carbon, 2010, 48: 575-586 |
[14] | Gong K, Du F, Xia Z, Durstock M, Dai L, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323: 760-764 |
[15] | Liang J, Jiao Y, Jaroniec M, Qiao S Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angew. Chem. Int. Ed., 2012, 51: 11496-11500 |
[16] | Yu S, Zheng W, Wang C, Jiang Q. Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene[J]. ACS Nano, 2010, 4: 7619-7629 |
[17] | Zhao Y, Yang L J, Chen S, Wang X Z, Ma Y W, Wu Q, Jiang Y F, Qian W J, Hu Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? [J]. J. Am. Chem. Soc., 2013, 135: 1201-1204 |
[18] | Talla J A. First principles modeling of boron-doped carbon nanotube sensors[J]. Phys. B: Condes. Matt., 2012, 407: 966-970 |
[19] | Cao Y H, Yu H, Tan J, Peng F, Wang H J, Li J, Zheng W X, Wong N B. Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane[J]. Carbon, 2013, 57: 433-442 |
[20] | Schwartz V, Xie H, Meyer H M, Overbury S H, Liang C D. Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon[J]. Carbon, 2011, 49: 659-668 |
[21] | Christian E B, Lødeng R, Holmen A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts[J]. Appl. Catal. A, 2008, 346: 1-27 |
[22] | Fierro J L G. Catalysis in C1 chemistry — future and prospect[J]. Catal. Lett., 1993, 22: 67-91 |
[23] | Alvarez-Galvan M C, Mota N, Ojeda M, Rojas S, Navarro R M, Fierro J L G. Direct methane conversion routes to chemicals and fuels[J]. Catal. Today, 2011, 171: 15-23 |
[24] | Li B, Su D S. First-principles studies of the activation of oxygen molecule and its role in partial oxidation of methane on boron-doped single-walled carbon nanotubes[J]. J. Phys. Chem. C, 2013, 117: 17485-17492 |
[25] | Grabowski R. Kinetics of oxidative dehydrogenation of C2—C3 alkanes on oxide catalysts[J]. Catal. Rev. Sci. Eng., 2006, 48: 199-268 |
[26] | Kung H H. Oxidative dehydrogenation of light (C2 to C6) alkanes[J]. Adv. Catal., 1994, 40: 1-38 |
[27] | Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59: 1758 |
[28] | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868 |
[29] | Henkelman G, Uberuaga B P, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys., 2000, 113: 9901-9904 |
[30] | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Matt. Sci., 1996, 6: 15-50 |
[31] | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54: 11169 |
[32] | Savin A, Becke A D, Flad J, Nesper R, Preuss H, von Schnering H G. A new look at electron localization[J]. Angew. Chem. Int. Ed., 1991, 30: 409-412 |
[33] | Tang W, Hu Z P, Wang M J, Stucky G D, Metiu H, McFarland E W. Methane complete and partial oxidation catalyzed by Pt-doped CeO2[J]. J. Catal., 2010, 273: 125-137 |
[34] | Hu X, Zhou Z, Lin Q, Wu Y, Zhang Z. High reactivity of metal-free nitrogen-doped carbon nanotube for the C—H activation[J]. Chem. Phys. Lett., 2011, 503: 287-291 |
[35] | Frank B, Zhang J, Blume R, Schlögl R, Su D. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons[J]. Angew. Chem. Int. Ed., 2009, 48: 6913-6917 |
[36] | Li B, Su D. Theoretical studies on ethylene selectivity in the oxidative dehydrogenation reaction on undoped and doped nanostructured carbon catalysts[J]. Chem. Asian. J., 2013, 8: 2605-2608 |
[37] | Zhou K, Li B, Zhang Q, Huang J Q, Tian G L, Jia J C, Zhao M Q, Luo G H, Su D S, Wei F. The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes[J]. ChemSusChem, 2014, 7: 723-728 |
[38] | Lu X, Chen Z F. Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (Chem. Rev., 2005, 105: 3643-3696 |
[39] | Hu X, Wu Y, Li H, Zhang Z. Adsorption and activation of O2 on nitrogen-doped carbon nanotubes[J]. J. Phys. Chem. C, 2010, 114: 9603-9607 |
[40] | Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6: 205-211 |
[41] | Montes-Moran M A, Menendez J A, Fuente E, Suarez D. Contribution of the basal planes to carbon basicity: an ab initio study of the H3O+-Pi interaction in cluster models[J]. J. Phys. Chem. B, 1998, 102: 5595-5601 |
[42] | Suarez D, Menendez J A, Fuente E, Montes-Moran M A. Contribution of pyrone-type structures to carbon basicity: an ab initio study[J]. Langmuir, 1999, 15: 3897-3904 |
[43] | Menendez J A, Suarez D, Fuente E, Montes-Moran M A. Contribution of pyrone-type structures to carbon basicity: theoretical evaluation of the pK(a) of model compounds[J]. Carbon, 1999, 37: 1002-1006 |
[44] | Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott E P J, Zeitler J A, Gladden L F, Knop-Gericke A, Schlögl R, Su D S. Tuning the acid/base properties of nanocarbons by functionalization via amination[J]. J. Am. Chem. Soc., 2010, 132: 9616-9630 |
[45] | Yuan C F, Chen W F, Yan L F. Amino-grafted graphene as a stable and metal-free solid basic catalyst[J]. J. Mater. Chem., 2012, 22: 7456-7460 |
[46] | Villa A, Tessonnier J P, Majoulet O, Su D S, Schlögl R. Transesterification of triglycerides using nitrogen-functionalized carbon nanotubes[J]. ChemSusChem, 2010, 3: 241-245 |
[1] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[2] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[3] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[4] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[5] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
[6] | Xiaoya LIU, Jinchao WANG, Ying LIU, Jinghuan MA. Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine [J]. CIESC Journal, 2022, 73(7): 2819-2834. |
[7] | LIANG-SU Zhuocheng, JI Guoxun, SUN Xinli, WANG Bo, ZHANG Shitong, DAI Xing. Theoretical study on mechanism of silicon heteroatoms to improve the complexation ability of crown ethers to lithium ions [J]. CIESC Journal, 2021, 72(6): 3149-3159. |
[8] | QIU Shuang, XIAO Yonghou, LIU Jianhui, HE Gaohong. Enhanced NH3-SCR performance over Cu-SAPO-34 prepared by one-step synthesis: effect of Si contents [J]. CIESC Journal, 2021, 72(5): 2578-2585. |
[9] | WANG Qin, XU Huijin, HAN Xingchao, ZHAO Changying. First principle calculation of thermochemical heat storage with MgO/Mg(OH)2 reaction [J]. CIESC Journal, 2021, 72(3): 1242-1252. |
[10] | Xueyu REN, Jingpei CAO, Naiyu YAO, Xiaoyan ZHAO, Xiaobo FENG, Tianlong LIU, Yunpeng ZHAO. Turning hierarchical ZSM-5 by template methods and its application in catalyzing lignite-derived volatiles to light aromatics [J]. CIESC Journal, 2021, 72(11): 5620-5632. |
[11] | Chengping ZHANG, Feiyao QING, Xiaoqing JIA, Hengdao QUAN. Synthesis and application of five-membered ring fluoride [J]. CIESC Journal, 2020, 71(9): 3963-3978. |
[12] | Wei SUN, Ran ZUO. Study on adsorption and diffusion of MMAl on AlN(0001)-Al surface covered with NH2/H [J]. CIESC Journal, 2020, 71(7): 3213-3219. |
[13] | Hong ZHANG, Liu TANG. Study on reaction mechanism of p-type dopant Cp2Mg in MOCVD gas phase [J]. CIESC Journal, 2020, 71(7): 3000-3008. |
[14] | Lingyu DONG, Rui GE, Yafei YUAN, Songyuan TANG, Guangping HAO, Anhui LU. Recent advances in porous carbon-based carbon dioxide electrocatalytic materials [J]. CIESC Journal, 2020, 71(6): 2492-2509. |
[15] | Xiaobo WANG,Qingshan ZHAO,Zhinian CHENG,Haoran ZHANG,Han HU,Luhai WANG,Mingbo WU. Design, synthesis and application of high-performance carbon-based energy storage materials [J]. CIESC Journal, 2020, 71(6): 2660-2677. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||