[1] |
Sternlicht B. Waste energy recovery: an excellent investment opportunity[J]. Energy Conversion and Management, 1982, 22: 361-373
|
[2] |
Hung T C, Shai T Y, Wang S K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667
|
[3] |
Hung T C. Waste heat recovery of organic Rankine cycle using dry fluids[J]. Energy Conversion and Management, 2001, 42(5):539-553
|
[4] |
Liu B T, Chen K H, Wang C C. Effect of working fluids on organic Rankine cycle for waste heat recovery[J]. Energy, 2004, 29(8): 1207-1217
|
[5] |
Wei D, Lu X, Lu Z, Gu J. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J]. Energy Conversion and Management, 2007, 48(4): 1113-1119
|
[6] |
Madhawa H, Mihajlo G, William M W, Yasuyuki I. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy, 2007, 32(9): 1698-1706
|
[7] |
Hisazumi Y, Yamasaki Y, Sugiyama S. Proposal for a high efficiency LNG power generation system utilizing waste heat from the combined cycle[J]. Applied Energy, 1998, 60(3): 169-182
|
[8] |
Wang Qiang(王强), Li Yanzhong(厉彦忠), Chen Xi(陈曦).A cryogenic power system for recovering LNG (liquefied natural gas) cooling energy based on a low-grade heat source[J]. Journal of Engineering for Thermal Energy and Power(热能动力工程), 2003, 18(3): 245-247
|
[9] |
Wang Q, Li Y Z, Wang J. Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source[J]. Applied Thermal Engineering, 2004, 24(4): 539-548
|
[10] |
Shi X J, Che D F. A combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Energy Conversion and Management, 2009, 50(3): 567-575
|
[11] |
Miyazaki T, Kang Y T, Akisawa A, Kashiwagi T. A combined power cycle using refuse incineration and LNG cold energy[J]. Energy, 2000, 25(7): 639-655
|
[12] |
Zhang N, Lior N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization[J]. Energy, 2006, 31(10/11): 1666-1679
|
[13] |
Zhang N, Lior N, Liu M, Han W. COOLCEP (cool clean efficient power): a novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization[J]. Energy, 2010, 35: 1200-1210
|
[14] |
Lin W S, Huang M B, He H M, Gu A Z. A transcritical CO2 Rankine cycle with LNG cold energy utilization and liquefaction of CO2 in gas turbine exhaust[J]. Journal of Energy Resources Technology Transactions of the ASME, 2009, 131(4): 042201-1-04220-5
|
[15] |
Rao W J, Zhao L J, Liu C, Zhang M G. A combined cycle utilizing LNG and low-temperature solar energy[J]. Applied Thermal Engineering, 2013, 60: 51-60
|
[16] |
Yang H C, Lu Y W, Ma C F, Wu Y T. Optimization study on the cascade utilization of LNG cold energy[J]. Renewable Energy Resources, 2011, 29(1): 71-80
|
[17] |
Wang Zhiqi(王志奇), Zhou Naijun(周乃君), Luo Liang(罗亮). Comparison of thermodynamic performance for waste heat power generation system with different low temperature working fluids[J]. Journal of Central South University(中南大学学报), 2010, 41(6): 2424-2429
|
[18] |
Nishith B D, Santanu B. Process integration of organic Rankine cycle[J]. Energy, 2009, 34: 1674-1686
|
[19] |
Karellas S, Schuster A. Supercritical fluid parameters in organic rankine cycle applications[J]. International Journal of Thermodynamics, 2008, 11(3): 101-108
|
[20] |
Cayer E, Galanis N, Nesreddine H. Parametric study and optimization of a transcritical power cycle using a low temperature source[J]. Applied Energy, 2010, 87: 1349-1357
|
[21] |
Gawlik K. Advanced binary cycles: optimum working fluids// Proceedings of the 32nd Intersociety[C]. San Diego, 1998: 1809-1814
|
[22] |
Liu Yuan(刘媛). Utilization of the waste heat boiler flue gas[J].Science & Technology Information(科技资讯), 2010, 18: 44
|
[23] |
Uehara H, Ikegami Y. Optimization of a closed-cycle OTEC plant system [J]. Solar Eng., 1990, 112: 247-256
|
[24] |
Incropera F P, Dewit D P. Fundamentals of Heat and Mass Transfer[M]. 5th ed. New York: John Wiley & Sons Inc., 2002: 587
|
[25] |
Gungor K E, Winterton R H S. Simplified general correlation for saturated flow boiling and comparisons of correlations with data[J]. Chemical Engineering Research and Design, 1987, 65: 148-156
|
[26] |
Shah M M. A general correlation for heat transfer during film condensation inside pipes[J]. International Journal of Heat and Mass Transfer, 1979, 22: 547-556
|