[1] |
Zheng Y, Pan Z M, Wang X C. Advances in photocatalysis in China [J]. Chinese Journal of Catalysis, 2013, 34 (3): 524-535
|
[2] |
Zhu J F, Zäch M. Nanostructured materials for photocatalytic hydrogen production [J]. Current Opinion in Colloid & Interface Science, 2009, 14 (4): 260-269
|
[3] |
Chen X B, Shen S H, Guo L J, Mao S S. Semiconductor-based photocatalytic hydrogen generation [J]. Chem.Rev., 2010, 110 (11): 6503-6570
|
[4] |
Domen K, Kudo A, Onishi T. Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3 [J]. Journal of Catalysis, 1986, 102 (1): 92-98
|
[5] |
Takata T, Shinohara K, Tanaka A, Hara M, Kondo J N, Domen K. A highly active photocatalytst for overall water splitting with a hydrated layered perovskite structure [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 106 (1): 45-49
|
[6] |
Lin H Y, Lee T H, Sie C Y. Photocatalytic hydrogen production with nickel oxide intercalated K4Nb6O17 under visible light irradiation [J]. International Journal of Hydrogen Energy, 2008, 33 (15): 4055-4063
|
[7] |
Hu C C, Teng H. Structural features of p-type semiconducting NiO as co-catalyst for photocatalytic water splitting [J]. Journal of Catalysis, 2010, 272 (1): 1-8
|
[8] |
Wang Guiyun (王桂赟), Wang Yanji (王延吉), Zhao Xinqiang (赵新强), Song Baojun (宋宝俊). Synthesis and properties of CoO/SrTiO3 for the photocatalytic decomposition of water [J]. Acta Phys. Chim. Sin. (物理化学学报), 2005, 21 (1): 84-88
|
[9] |
Wang Guiyun (王桂赟), Wang Yanji (王延吉), Qin Ya (秦娅), Song Baojun (宋宝俊). CoO/CaTiO3 catalyst for photocatalytic decomposition of water to hydrogen-preparation method and investigation of photocatalysis mechanism [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2005, 56 (9): 1660-1665
|
[10] |
Li L K, Xu, L L, Shi W D, Guan J. Facile preparation and size-dependent photocatalytic activity of Cu2O nanocrystals modified titania for hydrogen evolution [J]. International Journal of Hydrogen Energy, 2013, 38 (2): 816-822
|
[11] |
Hu C C, Nian J N, Teng H S. Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3 [J]. Solar Energy Materials & Solar Cells, 2008, 92 (9): 1071-1076
|
[12] |
Wang Y F, Hsieh M C, Lee J F, Yang C M. Nonaqueous synthesis of CoOx/TiO2 nanocompoites showing high photocatalytic activity of hydrogen generation [J]. Applied Catalysis B: Environmental, 2013, 142/143: 626-632
|
[13] |
Sang H X, Wang X T, Fan C C, Wang F. Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route [J]. International Journal of Hydrogen Energy, 2012, 37 (2): 1348-1355
|
[14] |
Bamwenda G R, Arakawa H. The visible light induced photocatalytic activity of tungsten trioxide powders [J]. Applied Catalysis A: General, 2001, 210 (1/2): 181-191
|
[15] |
Huang H, Yue Z K, Song Y J, Du Y K, Yang P. Mesoporous tungsten oxides as photocatalysts for O2 evolution under irradiation of visible light [J]. Materials Letters, 2012, 88: 57-60
|
[16] |
Peng T Y, Ke D N, Xiao J R, Wang L, Hu J, Zan L. Hexagonal phase WO3 nanorods: hydrothermal preparation, formation, mechanism and its photocatalytic O2 production under visible-light irradiation [J]. Journal of Solid State Chemistry, 2012, 194: 250-256
|
[17] |
Yu R S, Wu C M. Characteristics of p-type transparent conductive CuCrO2 thin films [J]. Applied Surface Science, 2013, 282: 92-97
|
[18] |
Zhou S, Fang X D, Deng Z H, Li D, Dong W W, Tao R H. Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals [J]. Sensors and Actuators B, 2009, 143 (1): 119-123
|
[19] |
Götzendörfer S, Polenzky C, Ulrich S, Löbmann P. Preparation of CuAlO2 and CuCrO2 thin films by sol-gel processing [J]. Thin Solid Films, 2009, 518 (4): 1153-1156
|
[20] |
Saadi S, Bouguelia A, Trari M. Photocatalytic hydrogen evolution over CuCrO2 [J]. Solar Energy, 2006, 80 (3): 272-280
|
[21] |
Benko F A, Koffyberg F P. Preparation and opto-electronic properties of semiconducting CuCrO2 [J]. Materials Research Bulletin, 1986, 21 (6): 753-757
|
[22] |
Bamwenda G R, Arakawa H. The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+ [J]. Solar Energy Materials & Solar Cells, 2001, 70 (1): 1-14
|
[23] |
Anger S, Trimis D, Stelzner B, Makhynya Y, Peil S. Devolopment of a porous burner unit for glycerine utilization from biodiesel production by supercritical water reforming [J]. International Journal of Hydrogen Energy, 2011, 36 (13): 7877-7883
|
[24] |
Özgür D Ö, Uysal B Z. Hydrogen production by aqueous phase catalytic reforming of glycerine [J]. Biomass and Bioenergy, 2011, 35 (2): 822-826
|
[25] |
McCafferty E. Relationship between the isoelectric point (pHpzc) and the potential of zero charge (Epzc) for passive metals [J]. Electrochimica Acta, 2010, 55 (5): 1630-1637
|
[26] |
Wang Y B, Wang Y S, Jiang R R, Xu R. Cobalt phosphate-ZnO composite photocatalysts for oxygen evolution from photocatalytic water oxidation [J]. Ind. Eng. Chem. Res., 2012, 51 (30): 9945-9951
|
[27] |
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles [J]. Sciences, 2011, 334 (6061): 1382-1385
|
[28] |
Maeda K, Masuda H, Domen K. Effect of electrolyte addition on activity of (Ga1-xZnx)(N1-xOx) photocatalyst for overall water splitting under visible light [J]. Catalysis Today, 2009, 147 (3/4): 173-178
|
[29] |
Liu Yanqiu, Chen Dewen, Xu Guangzhi. The promotion catalysis and negative catalysis of RuO2 on the interfacial photoreaction in superfine CdS particl system [J]. Chinese Journal of Magnetic Resonance, 2001, 18 (3): 201-208
|
[30] |
NIST. NIST X-ray Photoelectron Spectroscopy Database [EB/OL]. [2000-06-06].http://srdata.nist.gov/xps/EngElmEngElmSrchQuery.aspx? EType=PE&CSOpt=Retri_ex_dat&Elm=Ru
|