[1] |
Rajeshwar K, Chenthamarakshan C R, Goeringer S, Djukic Miljana. Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation [J]. Pure and Applied Chemistry, 2001, 73 (12): 1849-1860
|
[2] |
Anpo M. Utilization of TiO2 photocatalysts in green chemistry [J]. Pure and Applied Chemistry, 2000, 72 (7): 1265-1270
|
[3] |
Wang H, Lewis J P. Second-generation photocatalytic materials: anion-doped TiO2 [J]. Journal of Physics: Condensed Matter, 2006, 18 (2): 421
|
[4] |
Iliev V, Tomova D, Bilyarska L, Eliyas A, Petrov L. Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution [J]. Applied Catalysis B: Environmental, 2006, 63 (3): 266-271
|
[5] |
Anderson C, Bard A J. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials [J]. The Journal of Physical Chemistry B, 1997, 101 (14): 2611-2616
|
[6] |
Xue M, Huang L, Wang J Q, Wang Y, Gao L, Zhu J H, Zou Z G. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size [J]. Nanotechnology, 2008, 19 (18): 185604
|
[7] |
Zhang Y J, Xu Y, Li T, Wang Y C. Preparation of ternary Cr2O3-SiC-TiO2 composites for the photocatalytic production of hydrogen [J]. Particuology, 2012, 10 (1): 46-50
|
[8] |
Sher Shah M S A, Park A R, Zhang K, Park H J, Yoo P. Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity [J]. ACS Applied Materials & Interfaces, 2012, 4 (8): 3893-3901
|
[9] |
Zheng Weishuang (郑伟双), Zhang Youguang (张光友), Lu Shixiang (卢士香), Xu Wenguo (徐文国). Study of doped-copper TiO2 photocatalytic degradation of unsymmetrical dimethyl-hydrazine [J]. Science & Technology Review (科技导报), 2006, 24 (7): 21-23
|
[10] |
Tseng I, Chang W, Wu J. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts [J]. Applied Catalysis B: Environmental, 2002, 37 (1): 37-48
|
[11] |
Wu Shuxin (吴树新), Ma Zhi (马智), Qin Yongning (秦永宁), Qi Xiaozhou (齐晓周), Liang Zhencheng (梁珍成). Photocatalytic redox activity of doped nanocrystalline TiO2 [J]. Acta Physico-Chimica Sinica (物理化学学报), 2004, 20 (2): 138-143
|
[12] |
Wu Y, Lu G, Li S. The role of Cu (I) species for photocatalytic hydrogen generation over CuOx/TiO2 [J]. Catalysis Letters, 2009, 133 (1/2): 97-105
|
[13] |
Zhang Z, Wang C, Zakaria R, Ying J Y. Role of particle size in nanocrystalline TiO2-based photocatalysts [J]. The Journal of Physical Chemistry B, 1998, 102 (52): 10871-10878
|
[14] |
Shan A Y, Ghazi T I M, Rashid S A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review [J]. Applied Catalysis A: General, 2010, 389 (1): 1-8
|
[15] |
Bideau M, Claudel B, Dubien C, Faure L, Kazouan H. On the "immobilization" of titanium dioxide in the photocatalytic oxidation of spent waters [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 91 (2): 137-144
|
[16] |
Al-Rifai N, Cao E, Dua V, Gavriilidis A. Microreaction technology aided catalytic process design [J]. Current Opinion in Chemical Engineering, 2013, 2 (3): 338-345
|
[17] |
Yoon T, Hong L, Kim D. Photocatalytic reaction using novel inorganic polymer derived packed bed microreactor with modified TiO2 microbeads [J]. Chemical Engineering Journal, 2011, 167 (2): 666-670
|
[18] |
Meng Z, Zhang X, Qin J. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst [J]. Nanoscale, 2013, 5 (11): 4687-4690
|
[19] |
Pimparkar K, Yen B, Goodell J R, Martin V I, Lee W H, Porco J A, Beeler A B, Jensen K F. Development of a photochemical microfluidics platform [J]. Journal of Flow Chemistry, 2011, 1 (2): 53-55
|
[20] |
Gorges R, Meyer S, Kreisel G. Photocatalysis in microreactors [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 167 (2): 95-99
|
[21] |
Matsushita Y, Ohba N, Kumada S, Sakeda K, Suzuki T, Ichimura T. Photocatalytic reactions in microreactors [J]. Chemical Engineering Journal, 2008, 135: S303-S308
|
[22] |
Teekateerawej S, Nishino J, Nosaka Y. Photocatalytic microreactor study using TiO2-coated porous ceramics [J]. Journal of Applied Electrochemistry, 2005, 35 (7/8): 693-697
|
[23] |
He Zhongyuan (何中媛), Li Yaogang (李耀刚), Zhang Qinghong (张青红), Wang Hongzhi (王宏志). A microreactor-photocatalysis device based on ZnO nanorod arrays growth on inner walls of microchannels [J]. Journal of Inorganic Chemistry (无机化学学报), 2009,25 (11): 2021-2025
|
[24] |
Ye Meiying (叶美英), Zhou Gang (周刚), Li Baoxing (李宝兴), Liu Jinhua (刘金华). Fabrication and application of TiO2 modified microfluidic chip micro-reactor [J]. Journal of Hangzhou Normal University (杭州师范大学学报), 2012, 11 (1): 1-6
|
[25] |
Lei L, Wang N, Zhang X M, Tai Q D, Tsai D P, Chan H L. Optofluidic planar reactors for photocatalytic water treatment using solar energy [J]. Biomicrofludics, 2010, 4 (4): 043004
|
[26] |
Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. The Journal of Physical Chemistry, 1994, 98 (51): 13669-13679
|
[27] |
Fang Shijie (方世杰), Xu Mingxia (徐明霞), Huang Weiyou (黄卫友), Zhang Yuzhen (张玉珍). Photocatalytic degradation of methyl orange on nanocrystalline TiO2 [J]. Journal of the Chinese Ceramic Society (硅酸盐学报), 2001, 29 (5): 439-442
|
[28] |
Wang Yizhong (王怡中), Fu Yan (符雁), Tang Hongxiao (汤鸿霄). Photocatalytic degradation of methyl orange in TiO2 suspension [J]. Environmental Science (环境科学), 1998, 19 (1): 1-4
|
[29] |
Wang Jun (王君), Zhang Xiangdong (张向东), Li Qi (李绮), Han Jiantao (韩建涛), Li Ying (李莹), Zhao Di (赵迪). Ultrasonic degradation of methyl orange in presence of SiO2 - doping TiO2 catalyst [J]. Chemical Research (化学研究), 2004, 15 (1): 12-15
|
[30] |
Wu Zibao (吴子豹), Huang Miaoliang (黄妙良), Yang Yuanyuan (杨媛媛), Lin Jianming (林建明), Wu Jihuai (吴季怀). Adsorption behavior and photocatalytic discoloration kinetics of methyl orange on supported TiO2 composite [J]. Fine Chemicals (精细化工), 2007, 24 (1): 21-26
|
[31] |
Yu Z, Chuang S S. Probing methylene blue photocatalytic degradation by adsorbed ethanol with in situ IR [J]. The Journal of Physical Chemistry C, 2007, 111 (37): 13813-13820
|
[32] |
Deng Qin (邓沁), Xiao Xinyan (肖新颜), Liao Dongliang (廖东亮), Wan Caixia (万彩霞). Kinetics study of photocatalytic of methyl orange on titania film [J]. Fine Chemical (精细化工), 2004, 20 (12): 721-723
|
[33] |
Lindstrom H, Wootton R, Iles A. High surface area titania photocatalytic microfluidic reactors [J]. AIChE Journal, 2007, 53 (3): 695-702
|
[34] |
Aran H C, Salamon D, Rijnaarts T, Mul G, Wessling M, Lammertink R G H. Porous photocatalytic membrane microreactor (P2M2): a new reactor concept for photochemistry [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 225 (1): 36-41
|