• 化工学报 • Previous Articles     Next Articles

CATALYST DESIGN FOR METHANE DEHYDROGENATION AND BENZENE HYDROGENATION

Li Yongdan, Hou Chaopeng, Qin Yuxiang, Meng Xiangchun, Chen Jiuling and Chang Liu (Department of Catalysis Science and Technology School of Chemical Engineering, Tianjin University Tianjin 300072)   

  • Online:2000-12-30 Published:2000-12-30

CATALYST DESIGN FOR METHANE DEHYDROGENATION AND BENZENE HYDROGENATION

  

Abstract: Highly active and stable nickel catalyst for dehydrogenation of methane and hydrogenation of benzene is prepared from a precursor with hydrotalcite-like anionic clam structure by coprecipitation. The nickel particles have a narrow size distribution in several nanometers, and have a strong interaction with other components such as Al2O3. This catalyst is highly sensitive to further modification by doping and to reaction condition. On a modified catalyst, benzene hydrogenation to cyclohexane proceeds to complete at 373 K. While on another catalyst, different structured nanocarbons are obtained at moderate temperatures. It is found that the thioresistance of the nickel catalyst in hydrogenation can be improved by doping.

CLC Number: