CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4713-4721.DOI: 10.11949/j.issn.0438-1157.20180532
Previous Articles Next Articles
TIAN Pengfei1, SHENG Yiyi1, SUN Yang1, DING Doudou1, XU Jing1, HAN Yifan1,2
Received:
2018-05-22
Revised:
2018-08-09
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (21808057, 91534127) and the National Key R&D Program of China (2018YFB0604500).
田鹏飞1, 盛依依1, 孙杨1, 丁豆豆1, 徐晶1, 韩一帆1,2
通讯作者:
徐晶
基金资助:
国家自然科学基金项目(21808057,91534127);国家重点研发计划项目(2018YFB0604500)。
CLC Number:
TIAN Pengfei, SHENG Yiyi, SUN Yang, DING Doudou, XU Jing, HAN Yifan. Formation efficiency of hydroxyl radical from H2O2 decomposition over Cu/Al2O3 catalyst[J]. CIESC Journal, 2018, 69(11): 4713-4721.
田鹏飞, 盛依依, 孙杨, 丁豆豆, 徐晶, 韩一帆. Cu/Al2O3催化剂用于H2O2分解生成羟基自由基的效率[J]. 化工学报, 2018, 69(11): 4713-4721.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180532
[1] | HU Y, CHENG H. Water pollution during China's industrial transition[J]. Environmental Development, 2013, 8:57-73. |
[2] | HUANG C, DONG C, TANG Z. Advanced chemical oxidation:its present role and potential future in hazardous waste treatment[J]. Waste Management, 1993, 13(5):361-377. |
[3] | Kuznetsova E V, Savinov E N, Vostrikova L A, et al. Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2[J]. Applied Catalysis B Environmental, 2004, 51(3):165-170. |
[4] | Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(Ⅲ) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles[J]. Journal of the American Chemical Society, 2007, 129(35):10929-10936. |
[5] | Pouran S R, Aziz A, Wan M, et al. Estimation of the effect of catalyst physical characteristics on Fenton-like oxidation efficiency using adaptive neuro-fuzzy computing technique[J]. Measurement, 2015, 59:314-328. |
[6] | He J, Ma W, He J, et al. Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH[J]. Applied Catalysis B Environmental, 2002, 39(3):211-220. |
[7] | Zhong X, Royer S, Zhang H, et al. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono-photo-Fenton process[J]. Separation & Purification Technology, 2011, 80(1):163-171. |
[8] | Yang X J, Xu X M, Xu J, et al. Iron oxychloride (FeOCl):an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135:16058-16061. |
[9] | Yang X J, Tian P F, Zhang X M, et al. The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation[J]. AIChE Journal, 2015, 61:166-176. |
[10] | Bokare A D, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275:121-135. |
[11] | Zhang L, Xu D, Hu C, et al. Framework Cu-doped AlPO4 as an effective Fenton-like catalyst for bisphenol A degradation[J]. Applied Catalysis B:Environmental, 2017, 207:9-16. |
[12] | Granato T, Katovic A, Valkaj K M, et al. Cu-silicalite-1 catalyst for the wet hydrogen peroxide oxidation of phenol[J]. Journal of Porous Materials, 2009, 16(2):227-232. |
[13] | Guzman-Vargas A, de la Rosa-Pineda J E, Oliver-Tolentino M A, et al. Stability of Cu species and zeolite structure on ecological heterogeneous Fenton discoloration-degradation of yellow 5 dye:efficiency on reusable Cu-Y catalysts[J]. Environmental Progress & Sustainable Energy, 2015, 34(4):990-998. |
[14] | Pan W, Zhang G, Zheng T, et al. Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation[J]. RSC Advances, 2015, 5(34):27043-27051. |
[15] | Subbaramaiah V, Srivastava V C, Mall I D. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition[J]. AIChE Journal, 2013, 59(7):2577-2586. |
[16] | Taran O P, Zagoruiko A N, Ayusheev A B, et al. Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study[J]. Chemical Engineering Journal, 2015, 282:108-115. |
[17] | Björkbacka Å, Yang M, Gasparrini C, et al. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides[J]. Dalton Transactions, 2015, 44(36):16045-16051. |
[18] | Lyu L, Zhang L, Hu C. Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres[J]. Chemical Engineering Journal, 2015, 274:298-306. |
[19] | Lyu L, Zhang L, Hu C, et al. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification[J]. Journal of Materials Chemistry A, 2016, 4(22):8610-8619. |
[20] | Lyu L, Zhang L, Wang Q, et al. Enhanced Fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation[J]. Environmental Science & Technology, 2015, 49(14):8639-8647. |
[21] | Wang H, Zhang L, Hu C, et al. Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions[J]. Chemical Engineering Journal, 2018, 332:572-581. |
[22] | Zhang Y, Liu C, Xu B, et al. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2:combination of adsorption and catalysis oxidation[J]. Applied Catalysis B:Environmental, 2016, 199:447-457. |
[23] | Sheng Y Y, Sun Y, Xu J, et al. Fenton-like degradation of rhodamine B over highly durable Cu-embedded alumina:kinetics and mechanism[J]. AIChE Journal, 2018, 64:538-549. |
[24] | Zhang X, Ding Y, Tang H, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst:efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236:251-262. |
[25] | Lai L, Zhang L, Hu C, et al. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification[J]. Journal of Materials Chemistry A, 2016, 4(22):8610-8619. |
[26] | Fu L, Li X, Liu M, et al. Insights into the nature of Cu doping in amorphous mesoporous alumina[J]. Journal of Materials Chemistry A, 2013, 1(46):14592-14605. |
[27] | Eisenberg G. Colorimetric determination of hydrogen peroxide[J]. Industrial & Engineering Chemistry Analytical Edition, 1943, 15(5):327-328. |
[28] | Lindsey M E, Tarr M A. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide[J]. Chemosphere, 2000, 41(3):409-417. |
[29] | Jensen M C R, Venkataramani K, Helveg S, et al. Morphology, dispersion, and stability of Cu nanoclusters on clean and hydroxylated α-Al2O3(0001) substrates[J]. The Journal of Physical Chemistry C, 2008, 112(43):16953-16960. |
[30] | TIAN P F, OUYANG L K, XU X Y, et al. The origin of palladium particle size effects in the direct synthesis of H2O2:is smaller better?[J]. Journal of Catalysis, 2017, 349:30-40. |
[31] | 张国臣. 过氧化氢生产技术[M]. 北京:化学工业出版社, 2012:54-72. ZHANG G C. Production Technology of H2O2[M]. Beijing:Chemical Industry Press, 2012:54-72. |
[32] | GOOR G, GLENNEBERG J, JACOBI S. Hydrogen Peroxide[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2007:396-397 |
[33] | Yang X j, Xu X m, Xu X c, et al. Modeling and kinetics study of Bisphenol A (BPA) degradation over an FeOCl/SiO2 Fenton-like catalyst[J]. Catalysis Today, 2016, 276:85-96. |
[34] | Arslan-Alaton I, Tureli G, Olmez-Hanci T. Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes:optimization by response surface methodology[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009, 202(2):142-153. |
[35] | Wu Y, Zhou S, Qin F, et al. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM)[J]. Journal of Hazardous Materials, 2010, 180(1):456-465. |
[36] | Mitsika E E, Christophoridis C, Fytianos K. Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples:kinetic study of the degradation and optimization using response surface methodology[J]. Chemosphere, 2013, 93(9):1818-1825. |
[37] | Cruz-González K, Torres-López O, García-León A, et al. Determination of optimum operating parameters for acid yellow 36 decolorization by electro-Fenton process using BDD cathode[J]. Chemical Engineering Journal, 2010, 160(1):199-206. |
[38] | Li H, Gong Y, Huang Q, et al. Degradation of orange Ⅱ by UV-assisted advanced Fenton process:response surface approach, degradation pathway, and biodegradability[J]. Industrial & Engineering Chemistry Research, 2013, 52(44):15560-15567. |
[39] | Zhu X, Tian J, Liu R, et al. Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology[J]. Separation and Purification Technology, 2011, 81(3):444-450. |
[40] | 王欣, 王金翠, 殷晓梅, 等. 乙酰甲胺磷UV-TiO2/类Fenton光催化降解过程的响应面法优化[J]. 应用化工, 2013, 42(1):33-40. WANG X, WANG J C, YIN X M, et al. Optimization of photocatalytic degradation of acephate by UV-TiO2/Fenton-like process using response surface methodology[J]. Applied Chemical Industry, 2013, 42(1):33-40. |
[41] | Zhang P, Yuan S, Liao P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions[J]. Geochimicaet Cosmochimica Acta, 2016, 172:444-457. |
[42] | He J, Yang X, Men B, et al. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:a review[J]. Journal of Environmental Sciences, 2016, 39:97-109. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[10] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[11] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[15] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||