Previous Articles Next Articles
TANG Lili, HE Daohang, GUAN Fuyi
Received:
2012-03-19
Revised:
2012-05-30
Online:
2012-11-05
Published:
2012-11-05
Supported by:
supported by the Fundamental Research Funds for the Central Universities(2012ZM0035).
唐丽丽, 何道航, 观富宜
通讯作者:
何道航
作者简介:
唐丽丽(1986-),女,硕士研究生。
基金资助:
中央高校基本科研业务费项目(2012ZM0035)。
CLC Number:
TANG Lili, HE Daohang, GUAN Fuyi. Progress of peptide based self-assembled nanomaterials for drug and gene delivery[J]. CIESC Journal, DOI: 10.3969/j.issn.0438-1157.2012.11.002.
唐丽丽, 何道航, 观富宜. 自组装肽基纳米材料运载药物和基因的研究进展[J]. 化工学报, DOI: 10.3969/j.issn.0438-1157.2012.11.002.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2012.11.002
[1] | Zhang S G,Holmes T,Lockshin C,Rich A.Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane[J].Proc. Natl. Acad. Sci. U.S.A.,1993,90(8):3334-3338 |
[2] | Zhang S G,Gelain F,Zhao X J.Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures[J].Semin. Cancer Biol.,2005,15(5):413-420 |
[3] | Ellis-Behnke R G,Liang Y X,You S W,Tay D K C,Zhang S G,So K F,Schneider G E.Nano-neuro knitting:peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision[J].Proc. Natl. Acad. Sci. U. S. A.,2006,103(16):5054-5059 |
[4] | Zhang S G.Emerging biological materials through molecular self-assembly[J].Biotechnol. Adv.,2002,20(5/6):321-339 |
[5] | Santoso S S,Vauthey S,Zhang S G.Structures,function and applications of amphiphilic peptides[J].Current Opinion in Colloid & Interface Science,2002,7(5/6):262-266 |
[6] | Keyes-Baig C,Duhamel J,Fung S Y,Bezaire J,Chen P. Self-assembling peptide as a potential carrier of hydrophobic compounds[J].J. Am. Chem. Soc.,2004,126(24):7522-7532 |
[7] | Fung S Y,Yang H,Bhola P T,Sadatmousavi P,Muzar E,Liu M Y,Chen P.Self-assembling peptide as a potential carrier for hydrophobic anticancer drug ellipticine:complexation,release and in vitro delivery[J].Adv. Funct. Mater.,2009,19(1):74-83 |
[8] | Ruan L P,Zhang H Y,Luo H L,Liu J P,Tang F S,Shi Y K,Zhao X J.Designed amphiphilic peptide forms stable nanoweb,slowly releases encapsulated hydrophobic drug,and accelerates animal hemostasis[J].Proc. Natl. Acad. Sci. U. S. A.,2009,106(13):5105-5110 |
[9] | Ye Z Y,Zhang H Y,Luo H L,Wang S K,Zhou Q H,Du X P,Tang C K,Chen L Y,Liu J P,Shi Y K,Zhang E Y,Ellis-Behnke R,Zhao X J.Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-1[J].J. Pept. Sci.,2008,14(2):152-162 |
[10] | Song H,Zhang L L,Zhao X J.Hemostatic efficacy of biological self-assembling peptide nanofibers in a rat kidney model[J].Macromol. Biosci.,2010,10(1):33-39 |
[11] | He Daohang(何道航),Tang Lili(唐丽丽).A class of half-sequence amphiphilic self-assembling peptides be used as nano-hemostatic materials and the carrier of hydrophobic compounds:CN,201110053063.X.2011-03-07 |
[12] | Guler M O,Claussen R C,Stupp S I.Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers[J].J. Mater. Chem.,2005,15(42):4507-4512 |
[13] | Fung S Y,Yang H,Chen P.Sequence effect of self-assembling peptides on the complexation and in vitro delivery of the hydrophobic anticancer drug ellipticine[J].PLoS One,2008,3(4):1-12 |
[14] | Fung S Y,Yang H,Sadatmousavi P,Sheng Y,Mamo T,Nazarian R,Chen P.Amino acid pairing for de novo design of self-assembling peptides and their drug delivery potential[J].Adv. Funct. Mater.,2011,21(13):2456-2464 |
[15] | Naskar J,Palui G,Banerjee A.Tetrapeptide-based hydrogels:for encapsulation and slow release of an anticancer drug at physiological pH[J].J. Phys. Chem. B,2009,113(35):11787-11792 |
[16] | Altunbas A,Lee S J,Rajasekaran S A,Schneider J P,Pochan D J.Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles[J].Biomaterials,2011,32(25):5906-5914 |
[17] | Wu M,Ye Z Y,Liu Y F,Liu B,Zhao X J.Release of hydrophobic anticancer drug from a newly designed self-assembling peptide[J].Mol. Biosyst.,2011,7(6):2040-2047 |
[18] | Liu J P,Zhang L L,Yang Z H,Zhao X J.Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro[J].International Journal of Nanomedicine,2011,6:2143-2153 |
[19] | Tang F S,Zhao X J.Interaction between a self-assembling peptide and hydrophobic compounds[J].J. Biomater. Sci-Polym. Ed.,2010,21(5):677-690 |
[20] | Wang J,Tang F S,Li F,Lin J,Zhang Y H,Du L F,Zhao X J.The amphiphilic self-assembling peptide EAK16-Ⅰ as a potential hydrophobic drug carrier[J].J. Nanomater.,2008,2008:1-8 |
[21] | Lu Y Z,Zhao X J.Fluorescence studies on a designed peptide of REIP as a potential hydrophobic drug carrier[J].Int. J. Pept. Res. Ther.,2011,17(2):81-86 |
[22] | Accardo A,Tesauro D,Mangiapia G,Pedone C,Morelli G.Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers[J].Biopolymers,2007,88(2):115-121 |
[23] | Morisco A,Accardo A,Tesauro D,Palumbo R,Benedetti E,Morelli G.Peptide-labeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells[J].Biopolymers,2011,96(1):88-96 |
[24] | Kim J K,Anderson J,Jun H W,Repka M A,Jo S.Self-assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery[J].Molecular Pharmaceutics,2009,6(3):978-985 |
[25] | Huang R L,Qi W,Feng L B,Schneider J P,Pochan D J.Self-assembling peptide-polysaccharide hybrid hydrogel as a potential carrier for drug delivery[J].Soft Matter,2011,7(13):6222-6230 |
[26] | Buchser W J,Pardinas J R,Shi Y,Bixby J L,Lemmon V P.96-Well electroporation method for transfection of mammalian central neurons[J].Biotechniques,2006,41(5):619-622 |
[27] | Peng P D,Cohen C J,Yang S,Hsu C,Jones S,Zhao Y,Zheng Z,Rosenberg S A,Morgan R A.Efficient nonviral Sleeping Beauty transposon-based TCR gene transfer to peripheral blood lymphocytes confers antigen-specific antitumor reactivity[J].Gene. Ther.,2009,16(8):1042-1049 |
[28] | Mae M,Langel U.Cell-penetrating peptides as vectors for peptide,protein and oligonucleotide delivery[J].Curr. Opin. Pharmacol.,2006,6(5):509-514 |
[29] | Bennion B J,Daggett V.The molecular basis for the chemical denaturation of proteins by urea[J].Proc. Natl. Acad. Sci. U. S. A.,2003,100(9):5142-5147 |
[30] | Fabre J W,Collins L.Synthetic peptides as non-viral DNA vectors[J].Curr. Gene. Ther.,2006,6(4):459-480 |
[31] | Morris M C,Depollier J,Mery J,Mery J,Heitz F,Divita G.A peptide carrier for the delivery of biologically active proteins into mammalian cells[J].Nat. Biotechnol.,2001,19(12):1173-1176 |
[32] | Gros E,Deshayes S,Morris M C,Aldrian-Herrada G,Depollier J,Heitz F,Divita G.A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction[J].Biochim. Biophys. Acta-Biomembr.,2006,1758(3):384-393 |
[33] | Munoz-Morris M A,Heitz F,Divita G,Morris M C.The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes[J].Biochem. Biophys. Res. Commun.,2007,355(4):877-882 |
[34] | Deshayes S,Heitz A,Morris M C,Charnet P,Divita G,Heitz F.Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis[J].Biochemistry,2004,43(6):1449-1457 |
[35] | Deshayes S,Morris M C,Divita G,Heitz F.Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics[J].J. Pept. Sci.,2006,12(12):758-765 |
[36] | Henriques S T,Castanho M A.Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide Pep-1 in lipidic vesicles[J].Biochemistry,2004,43(30):9716-9724 |
[37] | Sharonov A,Hochstrasser R M.Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes[J].Biochemistry,2007,46(27):7963-7972 |
[38] | Henriques S T,Quintas A,Bagatolli L A,Homble F,Castanho M.Energy-independent translocation of cell-penetrating peptides occurs without formation of pores.A biophysical study with Pep-1[J].Mol. Membr. Biol.,2007,24(4):282-293 |
[39] | Aoshiba K,Yokohori N,Nagai A.Alveolar wall apoptosis causes lung destruction and emphysematous changes[J].Am. J. Respir. Cell. Mol. Biol.,2003,28(5):555-562 |
[40] | Maron M B,Folkesson H G,Stader S M,Walro J M.PKA delivery to the distal lung air spaces increases alveolar liquid clearance after isoproterenol-induced alveolar epithelial PKA desensitization[J].Am. J. Physiol-Lung. Cell. Mol. Physiol.,2005,289(2):L349-L354 |
[41] | Bais M V,Kumar S,Tiwari A K,Kataria R S,Nagaleekar V K,Shrivastava S,Chindera K.Novel Rath peptide for intracellular delivery of protein and nucleic acids[J].Biochem. Biophys. Res. Commun.,2008,370(1):27-32 |
[42] | Stoilova T B,Kovalchuk S I,Egorova N S,Surovoy A Y,Ivanov V T.Gramicidin A-based peptide vector for intracellular protein delivery[J].Biochim. Biophys. Acta-Biomembr.,2008,1778(10):2026-2031 |
[43] | Austin C D,Wen X H,Gazzard L,Nelson C,Scheller R H,Scales S J.Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates[J].Proc. Natl. Acad. Sci. U. S. A.,2005,102(50):17987-17992 |
[44] | Yang J,Chen H,Vlahov I R,Cheng J X,Low P S.Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging[J].Proc. Natl. Acad. Sci. U. S. A.,2006,103(37):13872-13877 |
[45] | Wender P A,Mitchell D J,Pattabiraman K,Pelkey E T,Steinman L,Rothbard J B.The design,synthesis,and evaluation of molecules that enable or enhance cellular uptake:peptoid molecular transporters[J].Proc. Natl. Acad. Sci. U. S. A.,2000,97(24):13003-13008 |
[46] | Kondo E,Tanaka T,Miyake T,Ichikawa T.Hirai M,Adachi M,Yoshikawa K,Ichimura K,Ohara N,Moriwaki A,Date I,Ueda R,Yoshino T.Potent synergy of dual antitumor peptides for growth suppression of human glioblastoma cell lines[J].Mol. Cancer. Ther.,2008,7(6):1461-1471 |
[47] | Kondo E,Seto M,Yoshikawa K,Yoshino T.Highly efficient delivery of p16 antitumor peptide into aggressive leukemia/lymphoma cells using a novel transporter system[J].Mol. Cancer. Ther.,2004,3(12):1623-1630 |
[48] | Wu C X,Lo S L,Boulaire J,Hong M L W,Beh H M,Leung D S Y,Wang S.A peptide-based carrier for intracellular delivery of proteins into malignant glial cells in vitro[J].J. Control. Release.,2008,130(2):140-145 |
[49] | Ho I A W,Lam P Y P,Hui K M.Identification and characterization of novel human glioma-specific peptides to potentiate tumor-specific gene delivery[J].Cancer. Gene. Ther.,2004,11(12):719-732 |
[50] | Zhao Y,Yokoi H,Tanaka M,Kinoshita T,Tan T W.Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide[J].Biomacromolecules,2008,9(6):1511-1518 |
[51] | Zhao Y,Tan T W,Yokoi H,Tanaka M,Kinoshita T. Controlled release and interaction of protein using self-assembling peptide RATEA16 nanofiber hydrogels[J].J. Polym. Sci. Pol. Chem.,2008,46(14):4927-4933 |
[52] | Zhao Y,Tanaka M,Kinoshita T,Higuchi M,Tan T W. Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size[J].J. Control. Release.,2010,147(3):392-399 |
[53] | Koutsopoulos S,Unsworth L D,Nagaia Y,Zhang S G.Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold[J].Proc. Natl. Acad. Sci. U. S. A.,2009,106(12):4623-4628 |
[54] | Measey T J,Schweitzer-Stenner R,Sa V,Kornev K. Anomalous conformational instability and hydrogel formation of a cationic class of self-assembling oligopeptides[J].Macromolecules,2010,43(18):7800-7806 |
[55] | Chow L W,Wang L J,Kaufman D B,Stupp S I.Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets[J].Biomaterials,2010,31(24):6154-6161 |
[56] | Collins L,Parker A L,Gehman J D,Eckley L,Perugini M A,Separovic F,Fabre J W.Self-assembly of peptides into spherical nanoparticles for delivery of hydrophilic moieties to the cytosol[J].ACS. Nano.,2010,4(5):2856-2864 |
[57] | Wang M,Law M,Duhamel J,Chen P.Interaction of a self-assembling peptide with oligonucleotides:complexation and aggregation[J].Biophys. J.,2007,93(7):2477-2490 |
[58] | Fominaya J,Gasset M,Garcia R,Roncal F,Albar J P,Bernad A.An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector[J].J. Gene. Med.,2000,2(6):455-464 |
[59] | Morris M C,Chaloin L,Mery J,Heitz F,Divita G.A novel potent strategy for gene delivery using a single peptide vector as a carrier[J].Nucleic. Acids. Res.,1999,27(17):3510-3517 |
[60] | Simeoni F,Morris M C,Heitz F,Divita G.Insight into the mechanism of the peptide-based gene delivery system MPG:implications for delivery of siRNA into mammalian cells[J].Nucleic. Acids. Res.,2003,31(11):2717-2724 |
[61] | Crombez L,Charnet A,Morris M C,Aldrian-Herrada G,Heitz F,Divita G.A non-covalent peptide-based strategy for siRNA delivery[J].Biochem. Soc. Trans.,2007,35:44-46 |
[62] | Morris M C,Chaloin L,Choob M,Archdeacon J,Heitz F,Divita G.Combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression[J].Gene. Ther.,2004,11(9):757-764 |
[63] | Morris M C,Gros E,Aldrian-Herrada G,Choob M,Archdeacon J,Heitz F,Divita G.A non-covalent peptide-based carrier for in vivo delivery of DNA mimics[J].Nucleic. Acids. Res.,2007,35(7):1-10 |
[64] | Guo X D,Tandiono F,Wiradharma N,Khor D,Tan C G,Khan M,Qian Y,Yang Y Y.Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector[J].Biomaterials,2008, 29(36):4838-4846 |
[65] | Seow W Y,Yang Y Y.A class of cationic triblock amphiphilic oligopeptides as efficient gene-delivery vectors[J].Adv. Mater.,2009,21(1):86-90 |
[66] | Wiradharma N,Khan M,Tong Y W,Wang S,Yang Y Y. Self-assembled cationic peptide nanoparticles capable of inducing efficient gene expression in vitro[J].Adv. Funct. Mater.,2008,18(6):943-951 |
[67] | Wiradharma N,Tong Y W,Yang Y Y.Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect[J].Biomaterials,2009,30(17):3100-3109 |
[68] | Naskar J,Roy S,Joardar A,Das S,Banerjee A.Self-assembling dipeptide-based nontoxic vesicles as carriers for drugs and other biologically important molecules[J].Org. Biomol. Chem.,2011,9(19):6610-6615 |
[69] | Xu X D,Liang L,Chen C S,Lu B,Wang N L,Jiang F G,Zhang X Z,Zhuo R X.Peptide hydrogel as an intraocular drug delivery system for inhibition of postoperative scarring formation[J].ACS Applied Materials & Interfaces,2010,2(9):2663-2671 |
[70] | Branco M C,Pochan D J,Wagner N J,Schneider J P.Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels[J].Biomaterials,2009,30(7):1339-1347 |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[7] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[8] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[9] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[10] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[11] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[12] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[13] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[14] | Lin PENG, Mingxin NIU, Yu BAI, Kening SUN. Preparation of hollow sulfur spheres-MoS2/rGO composite and its application in lithium-sulfur batteries [J]. CIESC Journal, 2022, 73(8): 3688-3698. |
[15] | Xiaoya LIU, Jinchao WANG, Ying LIU, Jinghuan MA. Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine [J]. CIESC Journal, 2022, 73(7): 2819-2834. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||