CIESC Journal ›› 2014, Vol. 65 ›› Issue (1): 152-159.doi: 10.3969/j.issn.0438-1157.2014.01.019

Previous Articles     Next Articles

Kinetics of synthesis of hydrogen peroxide directly from H2 and O2 over Pd/HAp catalyst

OUYANG Like, DA Guojin, TIAN Pengfei, CHEN Tianyuan, XU Jing, HAN Yifan   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2013-07-01 Revised:2013-09-06 Online:2014-01-05 Published:2014-01-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21176071, 21106041, 21273070).

Abstract: H2O2 synthesis directly from H2 and O2, as a "green process" and "atomic-economic reaction", is one of the most promising processes for replacing anthraquinone autoxidation process. In this paper, Pd/HAp (hydroxylapatite) catalyst was prepared by the conventional incipient-wetness impregnation method and highly dispersed Pd particles with an average size of 2.5 nm were obtained. Kinetic studies of H2O2 hydrogenation and direct synthesis of H2O2 were performed over a Pd/HAp catalyst and apparent activation energies and reaction orders with respect to H2 and O2 were calculated by power law functional models. Kinetic parameters indicated that the formation of H2O2 was favored at a lower reaction temperatures and higher O2 partial pressure, while higher H2 partial pressure would facilitate H2O formation.

Key words: synthesis, hydroxylapatite, catalyst, kinetics

CLC Number: 

  • O614.8

[1] Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process[J]. Angew. Chem. Int. Ed., 2006, 45 (42): 6962-6984
[2] Samanta C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen:an overview of recent developments in the process[J]. Appl. Catal. A:General, 2008, 350 (2): 133-149
[3] Biasi P, Canu P, Menegazzo F, Pinna F, Salmi T O. Direct synthesis of hydrogen peroxide in a trickle bed reactor: comparison of Pd-based catalysts[J]. Ind. Eng. Chem. Res. , 2012, 51 (26): 8883-8890
[4] Freakley S J, Piccinini M, Edwards J K, Ntainjua E N, Moulijn J A, Hutchings G J. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2 catalyst in a flow reactor[J]. ACS Catal., 2013, 3 (4): 487-501
[5] Colery J, Schoebrechts J, van Weynbergh J. Direct synthesis of hydrogen peroxide by heterogeneous catalysis, catalyst for the synthesis and method of preparation of the said catalyst[P]:US, 5447706. 1995
[6] Lunsford J. The direct formation of H2O2 from H2 and O2 over palladium catalysts[J]. J. Catal., 2003, 216 (1/2): 455-460
[7] Han Y F, Zhong Z, Ramesh K, Chen F, Chen L, White T, Tay Q, Yaakub S N, Wang Z. Au promotional effects on the synthesis of H2O2 directly from H2 and O2 on supported Pd-Au alloy catalysts[J]. J. Phys. Chem. C, 2007, 111 (24): 8410-8413
[8] Moreno T, Garcia-Serna J, Cocero M J. Direct synthesis of hydrogen peroxide in methanol and water using scCO2 and N2 as diluents[J]. Green Chem., 2010, 12 (2): 282-289
[9] Liu Q, Lunsford J H. The roles of chloride ions in the direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst in a H2SO4/ethanol system[J]. J. Catal, 2006, 239 (1): 237-243
[10] Han Y F, Lunsford J. A comparison of ethanol and water as the liquid phase in the direct formation of H2O2 from H2 and O2 over a palladium catalyst[J]. Catal. Lett, 2005, 99 (1/2):13-19
[11] Nomura Y, Ishihara T, Hata Y, Kitawaki K, Kaneko K, Matsumoto H. Nanocolloidal Pd-Au as catalyst for the direct synthesis of hydrogen peroxide from H2 and O2[J]. ChemSusChem, 2008, 1 (7):619-621
[12] Chaak R E, Sra A K, Leonard B M, Cable R E, Bauer J C, Han Y F, Means J, Teizer W, Vasquez Y, Funck E S. Metallurgy in a beaker:nanoparticle toolkit for the rapid low-temperature solution synthesis of functional multimetallic solid-state materials[J]. J. Am. Chem. Soc., 2005, 127 (10): 3506-3515
[13] Xu J, Ouyang L K, Da G J, Song Q Q, Yang X J, Han Y F. Pt promotional effects on Pd-Pt alloy catalysts for hydrogen peroxide synthesis directly from hydrogen and oxygen[J]. J. Catal., 2012, 285 (1): 74-82
[14] Ntainjua E, Freakley S, Hutchings G. Direct synthesis of hydrogen peroxide using ruthenium catalysts[J]. Top. Catal., 2012, 55 (11/12/13): 718-722
[15] Ntainjua N E, Edwards J K, Carley A F, Lopez-Sanchez J A, Moulijn J A, Herzing A A, Kiely C J, Hutchings G J. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide[J]. Green Chem., 2008, 10:1162-1169
[16] Choudhary V R, Samanta C, Choudhary T V. Influence of nature/ concentration of halide promoters and oxidation state on the direct oxidation of H2 to H2O2 over Pd/ZrO2 catalysts in aqueous acidic medium[J]. Catal. Commun., 2007, 8 (9): 1310-1316
[17] Sun M, Zhang J, Zhang Q, Wang Y, Wan H. Polyoxometalate-supported Pd nanoparticles as efficient catalysts for the direct synthesis of hydrogen peroxide in the absence of acid or halide promoters[J]. Chem. Commun., 2009(34): 5174-5176
[18] Han Y F, Lunsford J. Direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst: the roles of the acid and the liquid phase[J]. J. Catal., 2005, 230(2): 313-316
[19] Li G, Edwards J, Carley A F, Hutchings G J. Direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au-Pd catalysts[J]. Catal. Today, 2007, 122:361-364
[20] Edwards J K, Solsona B, Carley E N N A F, Herzing A A, Kiely C J, Hutchings G J. Switching off hydrogen peroxide hydrogenation in the direct synthesis process[J]. Science, 2009, 323:1037-1041
[21] Deguchi T, Iwamoto M. Kinetics and simulation including mass-transfer processes of direct H2O2 synthesis from H2 and O2 over Pd/C catalyst in water containing H+ and Br- ions[J]. Ind. Eng. Chem. Res., 2011, 50 (8): 4351-4358
[22] Mori K, Yamaguchi K, Hara T, Mizugaki T, Ebitani K, Kaneda K.Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts[J]. J. Am. Chem. Soc., 2002, 124 (39): 11572-11573
[23] Liu Y, Tsunoyama H, Akita T, Xie S, Tsukuda T. Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime[J]. ACS Catal., 2010, 1 (1): 2-6
[24] Han Y F, Phonthammachai N, Ramesh K, Zhong Z, White T. Removing organic compounds from aqueous medium via wet peroxidation by gold catalysts[J]. Environ. Sci. Technol., 2007, 42 (3): 908-912
[25] Xu J, White T, Li P, He C, Han Y F. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature[J]. J. Am. Chem. Soc., 2010, 132 (38): 13172-13173
[26] Choudhary V R, Samanta C, Jana P. Hydrogenation of hydrogen peroxide over palladium/carbon in aqueous acidic medium containing different halide anions under static/flowing hydrogen[J]. Ind. Eng. Chem. Res., 2006, 46(10):3237-3242
[27] Tian P F, Ouyang L K, Xu X C, Xu J, Han Y F. Density functional theory study of direct synthesis of H2O2 from H2 and O2 on Pd(111), Pd(100), Pd(110) surface[J]. Chin. J. Catal., 2013, 5(34):1002-1012
[28] Liu Q, Lunsford J H. Controlling factors in the direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst in ethanol[J]. Appl. Catal. A: General, 2006, 314 (1): 94-100
[1] Youqun CHU, Zhanbang GE, Yufeng JIAO, Jianping ZHANG, Guanxuan GUO, Yinghong ZHU. Electro-oxidative cyanidation of C—H bond by chloride ion in organic aqueous solution [J]. CIESC Journal, 2022, 73(7): 3018-3025.
[2] Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires [J]. CIESC Journal, 2022, 73(7): 3038-3044.
[3] Chenyu SU, Ying YANG, Xingfu SONG. Selective electro-oxidation of bromide ion in potassium-extracted brine from rock salt mines [J]. CIESC Journal, 2022, 73(7): 3007-3017.
[4] Wenjing ZHANG, Jing LI, Zidong WEI. Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode [J]. CIESC Journal, 2022, 73(6): 2289-2305.
[5] Dawei PAN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Progress on regulation of meso-scale structures for microfluidic emulsion-template synthesis of functional microparticles [J]. CIESC Journal, 2022, 73(6): 2306-2317.
[6] Bo MENG, Yanping LIU, Xinke JIANG, Yifan HAN. The scale regulation of Fe5C2-MnO x and their catalytic performance for the preparation of olefins from syngas [J]. CIESC Journal, 2022, 73(6): 2677-2689.
[7] Ke XU, Guoqiang SHI, Dongfeng XUE. Inorganic hybrid perovskite cluster materials: luminescence properties of mesoscale perovskite materials [J]. CIESC Journal, 2022, 73(6): 2748-2756.
[8] Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697.
[9] Hui YANG, Hongze LI, Quan CHEN, Zexi ZHENG, Ran LI, Qicheng SUN. Dynamics of the transition of mass flow to funnel flow in a silo [J]. CIESC Journal, 2022, 73(6): 2722-2731.
[10] Yong LU, Duiping LIU, Chenyang LI, Jibin ZHOU, Mao YE. Investigation on MTO catalyst morphology and its coke amount by fiber-optic endoscope image method [J]. CIESC Journal, 2022, 73(6): 2662-2668.
[11] Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129.
[12] Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes [J]. CIESC Journal, 2022, 73(5): 2206-2221.
[13] Yuxin REN, Runfeng XU, Wanying WANG, Pengzhong CHEN, Xiaojun PENG. Synthesis and stability study of anthraquinone dyes for color photoresist [J]. CIESC Journal, 2022, 73(5): 2251-2261.
[14] Chunhui LI, Hui HE, Mingjian HE, Meng ZHANG, Yang GAO, Caishan JIAO. Extraction kinetics of Ce(Ⅳ) from nitric acid solutions using ionic liquid [J]. CIESC Journal, 2022, 73(4): 1606-1614.
[15] Binbin YU, Xinsheng JIANG, Jin YU, Yunxiong CAI, Yuxi LI, Donghai HE, Jiajia YU. Experimental and chemical dynamics study on the inhibition of combustion of aviation kerosene by C6F12O [J]. CIESC Journal, 2022, 73(4): 1834-1844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!