CIESC Journal ›› 2017, Vol. 68 ›› Issue (1): 8-22.DOI: 10.11949/j.issn.0438-1157.20161279
Previous Articles Next Articles
QIAN Ming, ZHANG Liuwei, WANG Jingyun
Received:
2016-09-12
Revised:
2016-10-19
Online:
2017-01-05
Published:
2017-01-05
Contact:
10.11949/j.issn.0438-1157.20161279
Supported by:
supported by the National Natural Science Foundation of China (21376039).
钱明, 张留伟, 王静云
通讯作者:
王静云
基金资助:
国家自然科学基金项目(21376039)。
CLC Number:
QIAN Ming, ZHANG Liuwei, WANG Jingyun. Progress in research of reaction-activated fluorescent probe for enzymes[J]. CIESC Journal, 2017, 68(1): 8-22.
钱明, 张留伟, 王静云. 反应激活型酶荧光探针的研究进展[J]. 化工学报, 2017, 68(1): 8-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20161279
[1] | WIJDEVEN R H, NEEFJES J, OVAA H. How chemistry supports cell biology:the chemical toolbox at your service[J]. Trends in Cell Biology, 2014, 24(12):751-760. |
[2] | PENG L, GAO M, CAI X L, et al. A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells[J]. Journal of Materials Chemistry B, 2015, 3:9168-9172. |
[3] | XUE C, LEI Y J, ZHANG S C, et al. A cyanine-derived "turn-on" fluorescent probe for imaging nitroreductase in hypoxic tumor cells[J]. Analytical Methods, 2015, 7:10125-10128. |
[4] | YUAN J, XU Y Q, ZHOU N N, et al. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging[J]. RSC Advances, 2014, 4:56207-56210. |
[5] | XU J, SUN S B, LI Q, et al. A rapid response "turn-on" fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging[J]. Analyst, 2015, 140:574-581. |
[6] | YOUDIM M B H, EDMONDSON D, TIPTON K F. The therapeutic potential of monoamine oxidase inhibitors[J]. Nature Reviews Neuroscience, 2006, 7(4):295-309. |
[7] | SONG Y J, WEI W L, QU X G. Colorimetric biosensing using smart materials[J]. Advance Materials, 2011, 23(37):4215-4236. |
[8] | WANG J S, WU L, REN J S, et al. Visualizing human telomerase activity with primer-modified Au nanoparticles[J]. Small, 2012, 8(2):259-264. |
[9] | CHIKKAVEERAIAH B V, BHIRDE A A, MORGAN N Y, et al. Electrochemical immunosensors for detection of cancer protein biomarkers[J]. ACS Nano, 2012, 6(8):6546-6561. |
[10] | ALBERTI D, VAN'T ERVE M, STEFANIA R, et al. A quantitative relaxometric version of the ELISA test for the measurement of cell surface biomarkers[J]. Angewandte Chemistry, 2014, 126:3556-3559. |
[11] | TERAI T, NAGANO T. Small-molecule fluorophores and fluorescent probes for bioimaging[J]. Pflugers Archiv:European Journal of Physiology, 2013, 465(3):347-359. |
[12] | 姜娜, 杨洪宝, 樊江莉, 等. 线粒体荧光探针最新研究进展[J]. 化工学报, 2016, 67(1):176-190. JIANG N, YANG H B, FAN J L, et al. Progress in research of mitochondrial fluorescence probes[J]. CIESC Journal, 2016, 67(1):176-190. |
[13] | 张世玲, 彭孝军. 氟离子荧光探针的研究进展[J]. 化工学报, 2016, 67(1):191-201. ZHANG S L, PENG X J. Research progress on fluorescent probes for fluoride ions[J]. CIESC Journal, 2016, 67(1):191-201. |
[14] | WANG B H, FAN J L, WANG X W, et al. Nile blue based infrared fluorescent probe imaging tumors that over-express cyclooxygenase-2[J]. Chemical Communications, 2015, 51:792-795. |
[15] | ZHANG H, FAN J L, WANG J Y, et al. Fluorescence discrimination of cancer from inflammation by molecular response to COX-2 enzymes[J]. Journal of the American Chemical Society, 2013, 135(46):17469-17475. |
[16] | ZHANG H, FAN J L, WANG J Y, et al. An off-on COX-2-specific fluorescent probe:targeting the Golgi apparatus of cancer cells[J]. Journal of the American Chemical Society, 2013, 135(31):11663-11669. |
[17] | QIAN L H, LI L, YAO S Q. Two-photon small molecule enzymatic probes[J]. Accounts of Chemical Research, 2016, 49(4):626-634. |
[18] | EDGINGTON L E, VERDOES M, BOGYO M. Functional imaging of proteases:recent advances in the design and application of substrate-based and activity-based probes[J]. Current Opinion in Chemical Biology, 2011, 15(6):798-805. |
[19] | GOMOKI G. Microtechnical demonstration of phosphatase in tissue sections[J]. Proceedings of the Society for Experimental Biology and Medicine, 1939, 42:23-26. |
[20] | ZLOKARNIK G, NEGULESCU P A, KNAPP T E, et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter[J]. Science, 1998, 279:1764-1765. |
[21] | ASANUMA D, SAKABE M, KAMIYA M, et al. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo[J]. Nature Communications, 2015, 6:6463-6469. |
[22] | LEE H W, HEO C H, SEN D, et al. Ratiometric two-photon fluorescent probe for quantitative detection of β-galactosidase activity in senescent cells[J]. Analytical Chemistry, 2014, 86(20):10001-10005. |
[23] | GU K Z, XU Y S, LI H, et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe[J]. Journal of American Chemical Society, 2016, 138(16):5334-5340. |
[24] | CUI L, ZHONG Y, ZHU W P, et al. A new prodrug-derived ratiometric fluorescent probe for hypoxia high selectivity of nitroreductase and imaging in tumor cell[J]. Organic Letters, 2011, 13:928-931. |
[25] | LI L, ZHANG C W, CHEN G Y, et al. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson's disease models[J]. Nature Communications, 2014, 5:3276-3285. |
[26] | LI Y H, SUN Y, LI J C, et al. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging[J]. Journal of the American Chemical Society, 2015, 137(19):6407-6416. |
[27] | SHEN W, YU J, GE J Y, et al. Light-up probes based on fluorogens with aggregation-induced emission characteristics for monoamine oxidase-a activity study in solution and in living cells[J]. ACS Applied Materials & Interfaces, 2016, 8(1):927-935. |
[28] | URANO Y, SAKABE M, KOSAKA N, et al. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe[J]. Science Translational Medicine, 2011, 3(110):110-119. |
[29] | WANG F Y, ZHU Y, ZHOU L, et al. Fluorescent in situ targeting probes for rapid imaging of ovarian-cancer-specific gamma-glutamyltranspeptidase[J]. Angewandte Chemie International Edition in English, 2015, 54(25):7349-7353. |
[30] | WU X F, LI L H, SHI W, et al. Sensitive and selective ratiometric fluorescence probes for detection of intracellular endogenous monoamine oxidase A[J]. Analytical Chemistry, 2016, 88(2):1440-1446. |
[31] | XU K H, WANG F H, PAN X, et al. High selectivity imaging of nitroreductase using a near-infrared fluorescence probe in hypoxic tumor[J]. Chemical Communications, 2013, 49(25):2554-2556. |
[32] | ZHANG J, LIU H W, HU X X, et al. Efficient two-photon fluorescent probe for nitroreductase detection and hypoxia imaging in tumor cells and tissues[J]. Analytical Chemistry, 2015, 87(23):11832-11839. |
[33] | ZHANG P S, JIANG X F, NIE X Z, et al. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking γ-glutamyltranspeptidase (GGT) level in vivo[J]. Biomaterials, 2016, 80:46-56. |
[34] | KOMATSU T, URANO Y. Evaluation of enzymatic activities in living systems with small-molecular fluorescent substrate probes[J]. Analytical Sciences, 2015, 31:257-265. |
[35] | SHIH J C, CHEN K, RIDD M J. Monoamine oxidase:from genes to behavior[J]. Annual Review of Neuroscience, 1999, 22:197-217. |
[36] | CASPI A, MCCLAY J, MOFFITT T E, et al. Role of genotype in the cycle of violence in maltreated children[J]. Science, 2002, 297:851-853. |
[37] | CHEN G, YEE D J, GUBERNATOR N G, et al. Design of optical switches as metabolic indicators new fluorogenic probes for monoamine oxidases (MAO A and B)[J]. Journal of the American Chemical Society, 2005, 127:4544-4545. |
[38] | ALBERS A E, RAWLS K A, CHANG C J. Activity-based fluorescent reporters for monoamine oxidases in living cells[J]. Chemical Communications, 2007, 44:4647-4649. |
[39] | KIM D, SAMBASIVAN S, NAM H, et al. Reaction-based two-photon probes for in vitro analysis and cellular imaging of monoamine oxidase activity[J]. Chemical Communications, 2012, 48(54):6833-6835. |
[40] | LONG S B, CHEN L, XIANG Y, et al. An activity-based fluorogenic probe for sensitive and selective monoamine oxidase-B detection[J]. Chemical Communications, 2012, 48(57):7164-7166. |
[41] | LI X F, ZHANG H T, XIE Y S, et al. Fluorescent probes for detecting monoamine oxidase activity and cell imaging[J]. Organic & Biomolecular Chemistry, 2014, 12(13):2033-2036. |
[42] | SHEN W, LONG S B, YU S A, et al. Design, synthesis, and evaluation of an activity-based probe for cellular imaging of monoamine oxidases[J]. Medicinal Chemistry Research, 2011, 21(11):3858-3862. |
[43] | ZHOU W H, VALLY M P, SHULTZ J, et al. New bioluminogenic substrates for monoamine oxidase assays[J]. Journal of the American Chemical Society, 2006, 128:3122-3123. |
[44] | XIANG Y M, HE B Y, LI X F, et al. The design and synthesis of novel "turn-on" fluorescent probes to visualize monoamine oxidase-B in living cells[J]. RSC Advances, 2013, 3(15):4876-4879. |
[45] | LI X F, YU J J, ZHU Q, et al. Visualization of monoamine oxidases in living cells using "turn-on" fluorescence resonance energy transfer probes[J]. Analyst, 2014, 139:6092-6095. |
[46] | ZHANG Y X, XU Y F, TAN SH Y, et al. Rapid and sensitive fluorescent probes for monoamine oxidases B to A at low concentrations[J]. Tetrahedron Letters, 2012, 53(51):6881-6884. |
[47] | KIM H M, CHO B R. Small-molecule two-photon probes for bioimaging applications[J]. Chemical Reviews, 2015, 115(11):5014-5055. |
[48] | WANG C C, BILLETT E, BORCHERT A, et al. Monoamine oxidases in development[J]. Cellular and Molecular Life Science, 2013, 70(4):599-630. |
[49] | THOMAS J A. Optical imaging probes for biomolecules:an introductory perspective[J]. Chemical Society Reviews, 2015, 44:4494-4500. |
[50] | KIKUCHI K. Design, synthesis and biological application of chemical probes for bio-imaging[J]. Chemical Society Reviews, 2010, 39(6):2048-2053. |
[51] | ROTMAN B B, ZDERIC J A, EDELSTEIN M. Fluorogenic substrates for β-D-galactosidases and phosphatases derived from fluorescein (3, 6-dihydroxyfluoran) and its monomethyl ether[J]. Proceedings of the National Academy of Sciences, 1963, 50:1-6. |
[52] | URANO Y, KAMIYA M, KANDA K, et al. Evolution of fluorescein as a platform for finely tunable fluorescence probes[J]. Journal of the American Chemical Society, 2005, 127:4888-4894. |
[53] | KAMIYA M, KOBAYASHI H, HAMA Y, et al. An enzymatically activated fluorescence probe for targeted tumor imaging[J]. Journal of the American Chemical Society, 2007, 129:3918-3929. |
[54] | KAMIYA M, ASANUMA D, KURANAGA E, et al. β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold[J]. Journal of the American Chemical Society, 2011, 133(33):12960-12963. |
[55] | HAN J Y, HAN M S, TUNG C H. A fluorogenic probe for β-galactosidase activity imaging in living cells[J]. Molecular Biosystems, 2013, 9(12):3001-3008. |
[56] | SAKABE M, ASANUMA D, KAMIYA M, et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization[J]. Journal of the American Chemical Society, 2013, 135(1):409-414. |
[57] | ZHANG X X, WU H, LI P, et al. A versatile two-photon fluorescent probe for ratiometric imaging E.coli β-galactosidase in live cells and in vivo[J]. Chemical Communications, 2016, 52(53):8283-8286. |
[58] | WILSON W R, HAY M P. Targeting hypoxia in cancer therapy[J]. Nature Reviews Cancer, 2011, 11(6):393-410. |
[59] | LI Z, LI X H, GAO X H, et al. Nitroreductase detection and hypoxic tumor cell imaging by a designed sensitive and selective fluorescent probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one[J]. Analytical Chemistry, 2013, 85(8):3926-3932. |
[60] | SHI Y M, ZHANG S C, ZHANG X R. A novel near-infrared fluorescent probe for selectively sensing nitroreductase (NTR) in an aqueous medium[J]. Analyst, 2013, 138(7):1952-1955. |
[61] | ZHU D J, XUE L, LI G P, et al. A highly sensitive near-infrared ratiometric fluorescent probe for detecting nitroreductase and cellular imaging[J]. Sensors and Actuators B:Chemical, 2016, 222:419-424. |
[62] | 万琼琼, 李照, 马会民. 硝基还原酶荧光探针的研究进展[J]. 分析科学学报, 2014, 30:755-760. WAN Q Q, LI Z, MA H M. Progress in fluorescent probes for nitroreductase[J]. Journal of Analytical Science, 2014, 30:755-760. |
[63] | RICKETTS W A, HANIGAN M H. Extracellular glutathione is a source of cysteine for cells that express γ-glutamyl transpeptidase[J]. Biochemistry, 1993, 32:6302-6306. |
[64] | STEFANIUK P, CIANCIARA J, DRAPALOA W. Present and future possibilities for early diagnosis of hepatocellular carcinoma[J]. World Journal of Gastroenterology, 2010, 16(4):418-424. |
[65] | YAOD F, JIANGD R, HUANG Z W, et al. Abnormal expression of hepatoma specific γ-glutamyl transferase and alteration of γ-glutamyl transferase gene methylation status in patients with hepatocellular carcinoma[J]. Cancer, 2000, 88:761-769. |
[66] | POMPELLA A, TATA D V, PAOLICCHI A, et al. Expression of γ-glutamyltransferase in cancer cells and its significance in drug resistance[J]. Biochemical Pharmacology, 2006, 71(3):231-238. |
[67] | LI L H, SHI W, WANG Z, et al. Sensitive fluorescence probe with long analytical wavelengths for γ-glutamyl transpeptidase detection in human serum and living cells[J]. Analytical Chemistry, 2015, 87(16):8353-8359. |
[1] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[2] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[3] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[4] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[5] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[6] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[7] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[8] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[9] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[10] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[11] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[12] | Wenxiao XIE, Shengkun JIA, Huishu ZHANG, Yiqing LUO, Xigang YUAN. Investigation on mass transfer behavior between floating bubbles and liquid in confined space [J]. CIESC Journal, 2022, 73(7): 2902-2911. |
[13] | Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing [J]. CIESC Journal, 2022, 73(7): 2790-2805. |
[14] | Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment [J]. CIESC Journal, 2022, 73(5): 2222-2232. |
[15] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||