CIESC Journal ›› 2017, Vol. 68 ›› Issue (5): 2009-2015.DOI: 10.11949/j.issn.0438-1157.20161609
Previous Articles Next Articles
LIU Ruilan, LIU Shuyun, RONG Zhou, JIANG Bing, PANG Zongqiang
Received:
2016-11-14
Revised:
2017-02-08
Online:
2017-05-05
Published:
2017-05-05
Supported by:
supported by the National Natural Science Foundation of China (61203213).
刘瑞兰, 刘树云, 戎舟, 江兵, 庞宗强
通讯作者:
刘瑞兰
基金资助:
国家自然科学基金项目(61203213)。
CLC Number:
LIU Ruilan, LIU Shuyun, RONG Zhou, JIANG Bing, PANG Zongqiang. Modeling soft sensor of 4-CBA concentration by AdaBoost algorithm with dual threshold technique[J]. CIESC Journal, 2017, 68(5): 2009-2015.
刘瑞兰, 刘树云, 戎舟, 江兵, 庞宗强. 基于双阈值AdaBoost算法的4-CBA含量软测量建模[J]. 化工学报, 2017, 68(5): 2009-2015.
[1] | 冒永生, 杨开香, 王丽军. PTA装置氧化过程实时优化与先进控制[J]. 化工自动化及仪表, 2012, 39(9): 1128-1132. MAO Y S, YANG K X, WANG L J. Real-time optimization and advanced control for pta oxidation process[J]. Control & Instruments in Chemical Industry, 2012, 39(9): 1128-1132. |
[2] | 王丽军. PX氧化动力学研究及氧化反应器模拟[D]. 杭州: 浙江大学, 2001. WANG L J. Studies on the kinetics of p-xylene oxidation oxidation and the reactor simulation[D]. Hangzhou: Zhejiang University, 2001. |
[3] | 牟盛静. 石化工业过程建模与优化若干问题研究[D]. 杭州: 浙江大学, 2004. MOU S J. The studies of process modeling and optimization in petrochemical industry[D]. Hangzhou: Zhejiang University, 2004. |
[4] | 刘瑞兰, 牟盛静, 苏宏业, 等. 基于支持向量机和粒子群算法的软测量建模[J]. 控制理论与应用, 2006, 23(6): 895-900. LIU R L, MOU S J, SU H Y, et al. Modeling soft sensor based on support vector machine and particle swarm optimization algorithms[J]. Control Theory and Applications, 2006, 23(6): 895-900 |
[5] | 颜学峰, 余娟, 钱锋. 基于自适应偏最小二乘回归的初顶石脑油干点软测量[J]. 化工学报, 2005, 56(8): 1151-1156. YANG X F, YU J, QIAN F. An evolution algorithm with select-best and prepotency operator and parameter estimation of 4-CBA model[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(8): 1151-1156. |
[6] | 胡永有, 古勇, 苏宏业, 等. 基于BPANN的4-CBA软测量模型研究[J]. 仪器仪表学报, 2003, 24(3): 226-230. HU Y Y, GU Y, SU H Y, et al. The research of 4-CBA soft- sensor model based on BPANN[J]. Chinese Journal of Scientific Instruments, 2003, 24(3): 226-230. |
[7] | 陈渭泉, 刘瑞兰, 牟盛静, 等. 基于贝叶斯方法的4-CBA含量的软测量研究[J]. 化工自动化及仪表, 2003, 30(5): 49-51. CHEN W Q, LIU R L, MOU S J, et al. The research on soft sensor of the concentration of 4-CBA based on Bayesian approach[J]. Control & Instruments in Chemical Industry, 2003, 30(5): 49-51. |
[8] | LIU R L, SU H Y, MOU S J, et al. Fuzzy neural network model of 4-CBA concentration for industrial PTA oxidation process[J]. Chinese Journal of Chemical Engineering, 2004, 12(2): 234-239. |
[9] | DU W L, QIAN F, LIU M D, et al. 4-CBA soft sensor based on fuzzy CMAC neural networks[J]. Chinese Journal of Chemical Engineering, 2005, 13(3): 437-440. |
[10] | 郑小霞, 钱锋. 基于证据框架的最小二乘支持向量机在精对苯二甲酸生产中的应用[J]. 化工学报, 2006, 57(7): 1612-1616. ZENG X X, QIAN F. Application of least squares support vector machine within evidence framework in PTA process[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(7): 1612- 1616. |
[11] | 刘瑞兰, 徐艳, 戎舟. 基于稀疏最小二乘支持向量机的软测量建模[J]. 化工学报, 2015, 66(4): 1402-1407. LIU R L, XU Y, RONG Z. Modeling soft sensor based on sparse least square support vector machine[J]. CIESC Journal, 2015, 66(4): 1402-1407. |
[12] | ZANG Y, SU H Y, LIU R L. Fuzzy support vector regression model of 4-CBA concentration for industrial PTA oxidation process[J]. Chinese Journal of Chemical Engineering, 2005, 13(5): 642-648. |
[13] | 颜学峰. 基于MLFN-PLSR的PX氧化反应组合建模方法[J]. 化工学报, 2007, 58(1): 149-154. YAN X F. Delvelop p-xylene oxidation reaction model based on MLFN_PLSR[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(1): 149-154 . |
[14] | FREUND Y, SCHAPIRE R E. A decision-theoretic generation of online learning and an application to Boosting[J]. Journal of Computer and System Science, 1997, 55(1): 119-139. |
[15] | DRUCKER H. Improving regressor using Boosting techniques[C]//Proc. of the 13th Annual Conf. on Computational Learning Theory. San Francisco, 1997: 208-219. |
[16] | SOLOMATINE D P, SHRESTHA D L. AdaBoost.RT: a boosting algorithm for regression problem[C]//Proc. of the Int. Joint Conf. on Networks. Budapes, 2004: 1163-1168. |
[17] | BAUMANN F, ERNST K, EHLERS A, et al. Symmetry enhanced AdaBoost[C]//International Conference on Advances in Visual Computing. Springer-Verlag, 2010: 286-295. |
[18] | 袁双, 吕赐兴. 基于PCA改进的快速AdaBoost算法研究[J]. 科学技术与工程, 2015, 15(29): 62-67. YUAN S, LÜ C X. Fast AdaBoost algorithm based on improved PCA[J]. Science Technology and Engineerring, 2015, 15 (29): 62-67. |
[19] | 查翔, 倪世宏, 张鹏. 关于AdaBoost.RT集成算法时间序列预测研究[J]. 计算机仿真, 2015, 32(9): 391-395. ZHA X, NI S H, ZHANG P. AdaBoost.RT intergrating prediction of time series based on adaptive and dynamic threshold[J]. Computer Simulation, 2015, 32(9): 391-395. |
[20] | ZHANG P B, YANG Z X. A novel AdaBoost framework with robust threshold and structural optimization[J]. IEEE Trans Cybem., 2016, (99): 1-13. |
[21] | 胡国胜. 基于加权支持向量机与AdaBoost集成的预测模型研究[J]. 计算机应用与软件, 2012, 29(12): 280-281. HU G S. Study on forecasting model based on WSVR and AdaBoost[J]. Computer Applications and Software, 2012, 29(12): 280-281. |
[22] | 刘庆华, 丁文涛, 涂娟娟, 等. 优化BP_AdaBoost算法及其交通事件检测[J]. 同济大学学报(自然科学版), 2015, 43(12): 1829-1833. LIU Q H, DING W T, TU J J, et al. Improved BP_AdaBoost algorithm and its application in traffic incident detection[J]. Journal of Tongji University(Natural Science), 2015, 43(12): 1829-1833. |
[23] | HU W M, HU W, MAYBNK S. AdaBoost-based algorithm for network intrusion detection[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2008, 238(2): 577-583. |
[24] | SHRESTHA D L, SOLOMATINE D P. Experiments with AdaBoost. RT, an improved boosting scheme for regression[J]. Neural Computation, 2006, 18(7): 1678-1710. |
[25] | DEVON K B, SVEN F C. A comparison of AdaBoost algorithms for time series forecast combination[J]. International Journal of Forecasting, 2016, 32(4): 1103-1119. |
[26] | HOLLAND J H. Adaptation in Natural and Aritificial Systems[M]. Ann. Arbor: University of Michigan Press, 1992: 126-137. |
[27] | 李希, 谢刚, 华卫琦. PTA技术国产化的主要化学工程问题及其研究思路[J]. 聚酯工业, 2001, 14(1): 1-7. LI X, XIE G, HUA W Q. Key problems and research program for PTA process domestic development[J]. Polyester Industry, 2001, 14(1): 1-7. |
[28] | 尹云华, 向阳, 刁磊, 等. PTA生产工艺及技术的研究进展[J]. 化工工业与工程技术, 2011, 32(5): 33-39. YIN Y H, XIANG Y, DIAO L, et al. Research progress of PTA production technology[J]. Journal of Chemical Industry &Engineering, 2011, 32(5): 33-39. |
[29] | 黄浩. 中国PTA行业的发展和现状[J]. 聚酯工业, 2016, 29(1): 1-2. HUANG H. Development and current situation of PTA industry in China[J]. Polyester Industry, 2016, 29(1): 1-2. |
[30] | 刘瑞兰, 戎舟. 工业PX氧化过程4-CBA含量的软测量[J]. 信息与控制, 2014, 43(3): 339-343. LIU R L, RONG Z. A soft sensor for 4-CBA soncentration in industrial PX oxidation processes[J]. Information and Control, 2014, 43(3): 339-343. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 361
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||