[1] |
RIDHA F N, LU D Y, SYMONDS R T, et al. Attrition of CaO-based pellets in a 0.1 MWth dual fluidized bed pilot plant for post-combustion CO2 capture[J]. Powder Technology, 2016, 291:60-65.
|
[2] |
VALVERDE J M, SANCHEZ-JIMENZ P E, PEREZ-MAQUEDA L A. Ca-looping for postcombustion CO2 capture:a comparative analysis on the performances of dolomite and limestone[J]. Applied Energy, 2015, 138:202-215.
|
[3] |
BATINI C, BURRA K R G, GUPTA A K. Sorption enhanced steam reforming of methane using calcium looping[C]//55th AIAA Aerospace Sciences Meeting, 2017:1610.
|
[4] |
MACDOWELL N, FLORIN N, BUCHARD A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11):1645-1669.
|
[5] |
MARKEWITZ P, KUCKSHINRICHS W, LEITNER W, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2[J]. Energy & Environmental Science, 2012, 5(6):7281-7305.
|
[6] |
VALVERDE J M. Ca-based synthetic materials with enhanced CO2 capture efficiency[J]. Journal of Materials Chemistry A, 2013, 1(3):447-468.
|
[7] |
ERANS M, MANOVIC V, ANTHONY E J. Calcium looping sorbents for CO2 capture[J]. Applied Energy, 2016, 180:722-742.
|
[8] |
BIASIN A, SEGRE C U, SALYVIULO G, et al. Investigation of CaO-CO2 reaction kinetics by in-situ XRD using synchrotron radiation[J]. Chemical Engineering Science, 2015, 127:13-24.
|
[9] |
SANCHEZ-JIMENZ P E, PEREZ-MAQUEDA L A, VALVERDE J M. Nano-silica supported CaO:a regenerable and mechanically hard CO2 sorbent at Ca-looping conditions[J]. Applied Energy, 2014, 118:92-99.
|
[10] |
ZHAO C, ZHOU Z, CHENG Z. Sol-gel-derived synthetic CaO-based CO2 sorbents incorporated with different inert materials[J]. Industrial & Engineering Chemistry Research, 2014, 53(36):14065-14074.
|
[11] |
REDDY G K, QUILLIN S, SMIRNIOTIS P. Influence of the synthesis method on the structure and CO2 adsorption properties of Ca/Zr sorbents[J]. Energy & Fuels, 2014,28(5):3292-3299.
|
[12] |
MANOVIC V, ANTHONY E J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J]. Environmental Science & Technology, 2008, 42(11):4170-4174.
|
[13] |
BLAMEY J, MANOVIC V, ANTHONY E J, et al. On steam hydration of CaO-based sorbent cycled for CO2 capture[J]. Fuel, 2015, 150:269-277.
|
[14] |
LIU W Q, AN H, QIN C L, et al. Performance enhancement of calcium oxide sorbents for cyclic CO2 capture-a review[J]. Energy & Fuels, 2012, 26(5):2751-2767.
|
[15] |
RADFAMIA H R, ILIUTA M C. Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation[J]. Chemical Engineering Journal, 2013, 232:280-289.
|
[16] |
WEI S, MAHULI S K, AGNIHOTRI R, et al. High surface area calcium carbonate:pore structural properties and sulfation characteristics[J]. Industrial & Engineering Chemistry Research, 1997, 36(6):2141-2148.
|
[17] |
FLORIN N H, HARRIS A T. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles[J]. Chemical Engineering Science, 2009, 64(2):187-191.
|
[18] |
WU S F, LI Q H, KIM J N, et al. Properties of a nano CaO/Al2O3 CO2 sorbent[J]. Industrial & Engineering Chemistry Research, 2008, 47(1):180-184.
|
[19] |
WANG S, FAN L, LI C, et al. Porous spherical CaO-based sorbents via PSS-assisted fast precipitation for CO2 capture[J]. ACS Applied Materials & Interfaces, 2014, 6(20):18072-18077.
|
[20] |
LUO C, SHEN Q, DING N, et al. Morphological changes of pure micro-and nano-sized CaCO3 during a calcium looping cycle for CO2 capture[J]. Chemical Engineering & Technology, 2012, 35(3):547-554.
|
[21] |
SANTOS E T, ALFONSIN C, CHAMBEL A, et al. Investigation of a stable synthetic sol-gel CaO sorbent for CO2 capture[J]. Fuel, 2012, 94:624-628.
|
[22] |
KIERZKOWSKA A M, PACCIANI R, MULLER C R. CaO-based CO2 sorbents:from fundamentals to the development of new, highly effective materials[J]. ChemSusChem, 2013, 6(7):1130-1148.
|
[23] |
CHEN C, YANG S, AHN W. Calcium oxide as high temperature CO2 sorbent:effect of textural properties[J]. Materials Letters, 2012, 75:140-142.
|
[24] |
SAKADJIAN B B, IYER M V, GUPTA H, et al. Kinetics and structural characterization of calcium-based sorbents calcined under subatmospheric conditions for the high-temperature CO2 capture process[J]. Industrial & Engineering Chemistry Rhesearch, 2007, 46(1):35-42.
|
[25] |
陈彰旭,郑炳云,李先学,等. 模板法制备纳米材料研究进展[J]. 化工进展, 2010, 29(1):94-99. CHEN Z X, ZHENG B Y, LI X X, et al. Progress in the preparation of nanomaterials employing template method[J]. Chemical Industry & Engineering Progress, 2010, 29(1):94-99.
|
[26] |
ZHAO D, FENG J, HUO Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350):548-552.
|
[27] |
ABEBE M, HEDIN N, BACSIK Z. Spherical and porous particles of calcium carbonate synthesized with food friendly polymer additives[J]. Crystal Growth & Design, 2015, 15(8):3609-3616.
|
[28] |
ZHAO Z, ZHANG L, DAI H, et al. Surfactant-assisted solvo-or hydrothermal fabrication and characterization of high-surface-area porous calcium carbonate with multiple morphologies[J]. Microporous & Mesoporous Materials, 2011, 138(1):191-199.
|
[29] |
COENEN A, CHURCH T L, HARRIS A T. Biological versus synthetic polymers as templates for calcium oxide for CO2 capture[J]. Energy & Fuels, 2011, 26(1):162-168.
|
[30] |
卢尚青,吴素芳. 碳酸钙热分解进展[J]. 化工学报, 2015, 66(8):2895-2902. LU S Q, WU S F. Advances in calcium carbonate thermal decomposition[J]. CIESC Journal, 2015, 66(8):2895-2902.
|