[1] |
YE X, ZHANG J, ZHANG Y, et al. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode[J]. Chemosphere, 2016, 164:304-313.
|
[2] |
RUI S R, SILVA A M T, FIGUEIREDO J L, et al. Catalytic wet peroxide oxidation:a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review[J]. Applied Catalysis B:Environmental, 2016, 187:428-460.
|
[3] |
VALKAJ K M, KATOVI? A, ZRN?EVI? S. Catalytic properties of Cu/13X zeolite based catalyst in catalytic wet peroxide oxidation of phenol[J]. Industrial & Engineering Chemistry Research, 2011, 50(8):4390-4397.
|
[4] |
PESTUNOVA O P, OGORODNIKOVA O L, PARMON V N. Studies on the phenol wet peroxide oxidation in the presence of solid catalysts[J]. Chemistry for Sustainable Development, 2003, 11:227-232.
|
[5] |
SUBBARAMAIAH V, SRIVASTAVA V C, MALL I D. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition[J]. AIChE Journal, 2013, 59(7):2577-2586.
|
[6] |
WANG Y, WEI H, LIU P, et al. Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol[J]. Catalysis Today, 2015, 258:120-131.
|
[7] |
DOMÍNGUEZ C M, OCÓN P, QUINTANIL A A, et al. Graphite and carbon black materials as catalysts for wet peroxide oxidation[J]. Applied Catalysis B:Environmental, 2014, 144:599-606.
|
[8] |
SILVA A M T, HERNEY-RAMIREZ J, SÖYLEMEZ U, et al. A lumped kinetic model based on the Fermi's equation applied to the catalytic wet hydrogen peroxide oxidation of Acid Orange 7[J]. Applied Catalysis B:Environmental, 2012, 121/122:10-19.
|
[9] |
ZHOU S, QIAN Z, SUN T, et al. Catalytic wet peroxide oxidation of phenol over Cu-Ni-Al hydrotalcite[J]. Applied Clay Science, 2011, 53(4):627-633.
|
[10] |
TARAN O P, AYUSHEEV A B, OGORODNIKOVA O L, et al. Perovskite-like catalysts LaBO3, (B=Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol[J]. Applied Catalysis B:Environmental, 2016, 180:86-93.
|
[11] |
HO?EVAR S, KRASOVEC U, OREL B. CWO of phenol on two differently prepared CuO-CeO2 catalysts[J]. Applied Catalysis B:Environment, 2000, 28:113-125.
|
[12] |
MARTIN-MARTINEZ M, RIBEIRO R S, MACHADO B F, et al. Role of nitrogen doping on the performance of carbon nanotube catalysts:a catalytic wet peroxide oxidation application[J]. ChemCatChem, 2016, 8(12):2068-2078.
|
[13] |
ZHANG X, YAN Q, HASSAN E B, et al. Temperature effects on formation of carbon-based nanomaterials from kraft lignin[J]. Materials Letters, 2017, 203:42-45.
|
[14] |
ZAZO J A, BEDIA J, FIERRO C M, et al. Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3, activation of lignin from black liquors[J]. Catalysis Today, 2012, 187(1):115-121.
|
[15] |
ZHANG G, LI Z, ZHENG H, et al. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate[J]. Applied Surface Science, 2016, 390:68-77.
|
[16] |
ZHAO Z, CANNON F S, NIETO-DELGADO C. Co-pyrolysis characteristics and kinetics of lignin and collagen[J]. Journal of Analytical & Applied Pyrolysis, 2016, 120:501-510.
|
[17] |
FOX J T, CANNON F S, BROWN N R, et al. Comparison of a new, green foundry binder with conventional foundry binders[J]. International Journal of Adhesion & Adhesives, 2012, 34(4):38-45.
|
[18] |
王季茹, 郭少青, 康荷菲, 等. SiO2负载CeO2催化氧化芴制备芴酮[J]. 化工进展, 2017, 36(6):2183-2189. WANG J R, GUO S Q, KANG H F, et al. Aerobic oxidation of 9H-fluorene to 9-fluorenone using SiO2-supported CeO2 catalyst[J]. Chemical Industry and Engineering Progress, 2017, 36(6):2183-2189.
|
[19] |
ZHAO Z, CANNON F S, NIETO-DELGADO C, et al. Lignin/collagen hybrid biomaterials as binder substitute for specialty graphites and electrodes[J]. Carbon, 2016, 108:303-317.
|
[20] |
PRIYANKA, SUBBARAMAIAH V, SRIVASTAVA V C, et al. Catalytic oxidation of nitrobenzene by copper loaded activated carbon[J]. Separation & Purification Technology, 2014, 125(14):284-290.
|
[21] |
ZHAO X, TAN Y, WU F, et al. Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance[J]. Science of the Total Environment, 2016, 571:380-387.
|
[22] |
GHODSELAHI T, VESAGHI M A, SHAFIEKHANI A. Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory[J]. Logos:Anales del Seminario de Metafísica, 2009, 5(2):157-180.
|
[23] |
李遥, 费会, 骆沁沁, 等. Fe-Cu/AC非均相催化剂制备及CWPO法深度处理印染废水[J]. 浙江大学学报(理学版), 2013, 40(6):676-680. LI Y, FEI H, LUO Q Q, et al. Preparation of Fe-Cu/activated carbon and advanced treatment of printing and dyeing wastewater by CWPO[J]. Journal of Zhejiang University (Science Edition), 2013, 40(6):676-680.
|
[24] |
ESPINÓS J P, MORALES J, BARRANCO A, et al. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts[J]. Journal of Physical Chemistry B, 2002, 106(27):6921-6929.
|
[25] |
SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11):1469-1482.
|
[26] |
李忠, 牛燕燕, 郑华艳, 等. 表面改性对Cu/活性炭催化剂表面Cu物种和催化活性的影响[J]. 无机化学学报, 2011, 27(7):1277-1284. LI Z, NIU Y Y, ZHENG H Y, et al. Influence of modification of activated carbon surface on Cu species and catalytic activity of Cu/AC catalyst[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(7):1277-1284.
|
[27] |
HU J, SHEN D, WU S, et al. Effect of temperature on structure evolution in char from hydrothermal degradation of lignin[J]. Journal of Analytical & Applied Pyrolysis, 2014, 106(3):118-124.
|
[28] |
JIANG W, LI Y, HAN W F, et al. Effect of the graphitic degree of carbon supports on the catalytic performance of ammonia synthesis over Ba-Ru-K/HSGC catalyst[J]. Journal of Energy Chemistry, 2014, 23(4):443-452.
|
[29] |
YIN A, GUO X, DAI W L, et al. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol:new insights on the synergetic effect between Cu0 and Cu+[J]. Journal of Chemical Physics, 2009, 113(25):11003-11013.
|
[30] |
LI F, LU C S, LI X N. The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chinese Chemical Letters, 2014, 25(11):1461-1465.
|
[31] |
TU C H, WANG A Q, ZHENG M Y, et al. Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation[J]. Applied Catalysis A:General, 2006, 297(1):40-47.
|
[32] |
NASIR M, SUBHAN A, PRIHANDOKO B, et al. Nanostructure and property of electrospun SiO2-cellulose acetate nanofiber composite by electrospinning[J]. Energy Procedia, 2017, 107:227-231.
|
[33] |
WANG S, WANG K, LIU Q, et al. Comparison of the pyrolysis behavior of lignins from different tree species[J]. Biotechnology Advances, 2009, 27(5):562-567.
|
[34] |
DOBSON K D, MCQUILLAN A J. In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2000, 56(3):557-565.
|
[35] |
HUANG X, XU Y, SHAN C, et al. Coupled Cu(Ⅱ)-EDTA degradation and Cu(Ⅱ) removal from acidic wastewater by ozonation:performance, products and pathways[J]. Chemical Engineering Journal, 2016, 299:23-29.
|
[36] |
XU Z, SHAN C, XIE B, et al. Decomplexation of Cu(Ⅱ)-EDTA by UV/persulfate and UV/H2O2:efficiency and mechanism[J]. Applied Catalysis B:Environmental, 2017, 200:439-447.
|
[37] |
LI L, HUANG Z, FAN X, et al. Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA[J]. Electrochimica Acta, 2017, 231:354-362.
|