CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4698-4709.DOI: 10.11949/0438-1157.20190894
• Process system engineering • Previous Articles Next Articles
Sheng JIANG(),Tianliang KUANG,Xiuxi LI()
Received:
2019-08-11
Revised:
2019-08-19
Online:
2019-12-05
Published:
2019-12-05
Contact:
Xiuxi LI
通讯作者:
李秀喜
作者简介:
江升(1994—),男,硕士研究生,基金资助:
CLC Number:
Sheng JIANG, Tianliang KUANG, Xiuxi LI. A chemical process fault detection method based on sparse filtering feature learning[J]. CIESC Journal, 2019, 70(12): 4698-4709.
江升, 旷天亮, 李秀喜. 基于稀疏过滤特征学习的化工过程故障检测方法[J]. 化工学报, 2019, 70(12): 4698-4709.
Add to citation manager EndNote|Ris|BibTeX
故障序号 | 过程变化 | 干扰类型 |
---|---|---|
1 | A/C物料进料比例扰动,B成分恒定 | 阶跃变化 |
2 | B组分扰动,A/C比例恒定 | 阶跃变化 |
3 | 组分D进料温度扰动 | 阶跃变化 |
4 | 反应器冷却水入口温度 | 阶跃变化 |
5 | 反应器冷却水入口温度 | 阶跃变化 |
6 | A组分泄漏 | 阶跃变化 |
7 | 组分C压力下降扰动 | 阶跃变化 |
8 | A、B、C进料成分 | 随机变化 |
9 | 组分D进料温度扰动 | 随机变化 |
10 | 组分C进料温度扰动 | 随机变化 |
11 | 反应器冷却水入口温度 | 随机变化 |
12 | 反应器冷却水入口温度 | 随机变化 |
13 | 反应器动力性能 | 缓慢漂移 |
14 | 反应器冷却水调节阀 | 堵塞 |
15 | 反应器冷却水调节阀 | 堵塞 |
16 | 未知 | 未知 |
17 | 未知 | 未知 |
18 | 未知 | 未知 |
19 | 未知 | 未知 |
20 | 未知 | 未知 |
Table 1 20 pre-set faults in TE process
故障序号 | 过程变化 | 干扰类型 |
---|---|---|
1 | A/C物料进料比例扰动,B成分恒定 | 阶跃变化 |
2 | B组分扰动,A/C比例恒定 | 阶跃变化 |
3 | 组分D进料温度扰动 | 阶跃变化 |
4 | 反应器冷却水入口温度 | 阶跃变化 |
5 | 反应器冷却水入口温度 | 阶跃变化 |
6 | A组分泄漏 | 阶跃变化 |
7 | 组分C压力下降扰动 | 阶跃变化 |
8 | A、B、C进料成分 | 随机变化 |
9 | 组分D进料温度扰动 | 随机变化 |
10 | 组分C进料温度扰动 | 随机变化 |
11 | 反应器冷却水入口温度 | 随机变化 |
12 | 反应器冷却水入口温度 | 随机变化 |
13 | 反应器动力性能 | 缓慢漂移 |
14 | 反应器冷却水调节阀 | 堵塞 |
15 | 反应器冷却水调节阀 | 堵塞 |
16 | 未知 | 未知 |
17 | 未知 | 未知 |
18 | 未知 | 未知 |
19 | 未知 | 未知 |
20 | 未知 | 未知 |
Fault | PCA | 改进的ICA | KPCA | 提出的方法(SFLR) | |||
---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | ||
1 | 99 | 100 | 100 | 100 | 100 | 100 | 99.75 |
2 | 98 | 96 | 98 | 98 | 98 | 98 | 98.375 |
3 | 2 | 1 | 1 | 1 | 4 | 8 | 9.875 |
4 | 6 | 99 | 65 | 96 | 9 | 100 | 99.875 |
5 | 23 | 20 | 24 | 23 | 25 | 27 | 31.375 |
6 | 99 | 100 | 100 | 100 | 99 | 100 | 100 |
7 | 42 | 100 | 100 | 100 | 100 | 100 | 100 |
8 | 97 | 89 | 97 | 98 | 95 | 97 | 95.25 |
9 | 1 | 1 | 1 | 2 | 4 | 4 | 9.75 |
10 | 30 | 18 | 70 | 67 | 43 | 51 | 90.5 |
11 | 22 | 72 | 43 | 66 | 24 | 81 | 68.875 |
12 | 97 | 90 | 98 | 97 | 97 | 98 | 98 |
13 | 93 | 95 | 95 | 94 | 94 | 95 | 95 |
14 | 81 | 100 | 100 | 100 | 79 | 100 | 99.875 |
15 | 1 | 2 | 1 | 2 | 5 | 7 | 12.5 |
16 | 13 | 16 | 76 | 73 | 30 | 52 | 56.625 |
17 | 74 | 93 | 87 | 94 | 74 | 95 | 92.125 |
18 | 89 | 90 | 90 | 90 | 90 | 90 | 90.25 |
19 | 0 | 29 | 26 | 29 | 3 | 49 | 24.625 |
20 | 32 | 45 | 70 | 66 | 41 | 55 | 77 |
Table 2 Failure detection rates for different methods of TE process/%
Fault | PCA | 改进的ICA | KPCA | 提出的方法(SFLR) | |||
---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | ||
1 | 99 | 100 | 100 | 100 | 100 | 100 | 99.75 |
2 | 98 | 96 | 98 | 98 | 98 | 98 | 98.375 |
3 | 2 | 1 | 1 | 1 | 4 | 8 | 9.875 |
4 | 6 | 99 | 65 | 96 | 9 | 100 | 99.875 |
5 | 23 | 20 | 24 | 23 | 25 | 27 | 31.375 |
6 | 99 | 100 | 100 | 100 | 99 | 100 | 100 |
7 | 42 | 100 | 100 | 100 | 100 | 100 | 100 |
8 | 97 | 89 | 97 | 98 | 95 | 97 | 95.25 |
9 | 1 | 1 | 1 | 2 | 4 | 4 | 9.75 |
10 | 30 | 18 | 70 | 67 | 43 | 51 | 90.5 |
11 | 22 | 72 | 43 | 66 | 24 | 81 | 68.875 |
12 | 97 | 90 | 98 | 97 | 97 | 98 | 98 |
13 | 93 | 95 | 95 | 94 | 94 | 95 | 95 |
14 | 81 | 100 | 100 | 100 | 79 | 100 | 99.875 |
15 | 1 | 2 | 1 | 2 | 5 | 7 | 12.5 |
16 | 13 | 16 | 76 | 73 | 30 | 52 | 56.625 |
17 | 74 | 93 | 87 | 94 | 74 | 95 | 92.125 |
18 | 89 | 90 | 90 | 90 | 90 | 90 | 90.25 |
19 | 0 | 29 | 26 | 29 | 3 | 49 | 24.625 |
20 | 32 | 45 | 70 | 66 | 41 | 55 | 77 |
测试FDR | 训练FDR | 测试FAR | 训练FAR |
---|---|---|---|
80.08 | 77.92 | 5.50 | 4.62 |
Table 3 Fault detection training and test results of cyclohexane non-catalytic oxidation process /%
测试FDR | 训练FDR | 测试FAR | 训练FAR |
---|---|---|---|
80.08 | 77.92 | 5.50 | 4.62 |
1 | Shu Y, Ming L, Cheng F, et al. Abnormal situation management: challenges and opportunities in the big data era[J]. Computers & Chemical Engineering, 2016, 91: 104-113. |
2 | Ge Z, Song Z, Gao F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
3 | Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis(Ⅰ): Quantitative model-based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 293-311. |
4 | Venkatasubramanian V, Rengaswamy R, Kavuri S N, et al. A review of process fault detection and diagnosis(Ⅱ): Qualitative models and search strategies[J]. Computers & Chemical Engineering, 2003, 27(3): 313-326. |
5 | Venkatasubramanian V, Rengaswamy R, Kavuri S N, et al. A review of process fault detection and diagnosis(Ⅲ): Process history based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 327-346. |
6 | Isermann R. Model-based fault-detection and diagnosis-status and applications[J]. Annual Reviews in Control, 2005, 29(1): 71-85. |
7 | Frank P M, Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems[J]. Journal of Process Control, 1997, 7(6): 403-424. |
8 | Chen J, Liao C. Dynamic process fault monitoring based on neural network and PCA[J]. Journal of Process Control, 2002, 12(2): 277-289. |
9 | Lau C, Ghosh K, Hussain M, et al. Fault detection of the Tennessee Eastman process with multi-scale PCA and ANFIS[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 120(2): 1-14. |
10 | Lu N, Gao F, Yang Y, et al. PCA-based modeling and on-line monitoring strategy for uneven-length batch process [J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3343-3352. |
11 | Lu N, Gao F, Wang F. Sub-PCA modeling and on-line monitoring strategy for batch process[J]. AIChE Journal, 2004, 50(1): 255-259. |
12 | Albazzaz H, Wang X Z. Statistical process control charts for batch operations based on independent component analysis[J]. Industrial and Engineering Chemistry Research, 2004, 43(21): 6731-6741. |
13 | Lee J, Yoo C, Lee I. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485. |
14 | Yu J, Chen J, Rashid M M. Multiway independent component analysis mixture model and mutual information based fault detection and diagnosis approach of multiphase batch process[J]. AIChE Journal, 2013, 59(8): 2761-2779. |
15 | Zhang Y, Ma C. Fault diagnosis of nonlinear process using multiscale KPCA and multiscale KPLS[J]. Chemical Engineering Science, 2011, 66(1): 64-72. |
16 | Zhang Y, Zhou H, Qin S J, et al. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 3-10. |
17 | Rad M A A, Tazdanpanah M J. Designing supervised local neural network classifiers based on EM clustering for fault diagnosis of Tennessee Eastman Process[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 146: 149-157. |
18 | Zhang J. Improved on-line process fault diagnosis through information fusion in multiple neural networks[J]. Computers & Engineering, 2006, 30(3): 558-571. |
19 | Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. |
20 | 郭丽丽, 丁世飞. 深度学习研究进展[J]. 计算机科学, 2015, 42(5): 28-33. |
Guo L L, Ding S F. Research progress on deep learning[J]. Computer Science, 2015, 42(5): 28-33. | |
21 | Bengio Y, Lamblin P, Dan P, et al. Greedy layer-wise training of deep networks[C]//International Conference on Neural Information Processing Systems, 2006: 153-160. |
22 | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2014, 18(7): 1527-1554. |
23 | LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436. |
24 | Ngiam J, Pang W K, Chen Z, et al. Sparse filtering[C]//International Conference on Neural Information Processing Systems. Granada, Spain, 2011: 1125-1133. |
25 | Lei Y, Jia F, Lin J, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137-3147. |
26 | Bielza C, Robles V, Larrañaga P. Regularized logistic regression without a penalty term: an application to cancer classification with microarray data[J]. Expert Systems with Applications, 2011, 38(5): 5110-5118. |
27 | Oommen T, Baise L G, Vogel R M. Sampling bias and class imbalance in maximum-likelihood logistic regression[J]. Mathematical Geosciences, 2011, 43(1): 99-120. |
28 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers and Chemical Engineering, 1993, 17(3): 245-255. |
29 | Shen Y, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman Process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. |
30 | Zhang Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM[J]. Chemical Engineering Science, 2009, 64(5): 801-811. |
31 | Qin S J. Process data analytics in the era of big data[J]. AIChE Journal, 2014, 60(9): 3092-3100. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[11] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[12] | Ke YANG, Chensheng WANG, Hong JI, Kai ZHENG, Zhixiang XING, Haipu BI, Juncheng JIANG. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254. |
[13] | Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234. |
[14] | Yan WANG, Jia HE, Jingjing YANG, Chendi LIN, Wentao JI. Inhibition of polyethylene dust explosion by oxalate and bicarbonate [J]. CIESC Journal, 2022, 73(9): 4207-4216. |
[15] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||