CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4710-4721.DOI: 10.11949/0438-1157.20190635
• Process system engineering • Previous Articles Next Articles
Received:
2019-06-10
Revised:
2019-08-12
Online:
2019-12-05
Published:
2019-12-05
Contact:
Ping ZHOU
通讯作者:
周平
作者简介:
姜乐(1994—),女,硕士研究生,基金资助:
CLC Number:
Yue JIANG,Ping ZHOU. Optimized incremental random vector functional-link networks and its application[J]. CIESC Journal, 2019, 70(12): 4710-4721.
姜乐,周平. 优化增量型随机权神经网络及应用[J]. 化工学报, 2019, 70(12): 4710-4721.
Add to citation manager EndNote|Ris|BibTeX
算法 | 隐层节点数目 | RMSE | |
---|---|---|---|
Heating load | Cooling load | ||
RVFLNs | 40 | 3.8066 | 4.5477 |
RVFLNs | 50 | 4.5690 | 5.8099 |
RVFLNs | 60 | 4.8659 | 6.3166 |
I-RVFLNs | 40 | 3.6951 | 3.8338 |
I-RVFLNs | 50 | 3.5300 | 3.5697 |
I-RVFLNs | 60 | 3.3696 | 3.4109 |
O-I-RVFLNs | 40 | 3.0929 | 3.3198 |
O-I-RVFLNs | 50 | 2.9963 | 3.1709 |
O-I-RVFLNs | 60 | 2.8696 | 3.0851 |
Table 1 Comparison of modeling results using different algorithms under the same hidden layer node
算法 | 隐层节点数目 | RMSE | |
---|---|---|---|
Heating load | Cooling load | ||
RVFLNs | 40 | 3.8066 | 4.5477 |
RVFLNs | 50 | 4.5690 | 5.8099 |
RVFLNs | 60 | 4.8659 | 6.3166 |
I-RVFLNs | 40 | 3.6951 | 3.8338 |
I-RVFLNs | 50 | 3.5300 | 3.5697 |
I-RVFLNs | 60 | 3.3696 | 3.4109 |
O-I-RVFLNs | 40 | 3.0929 | 3.3198 |
O-I-RVFLNs | 50 | 2.9963 | 3.1709 |
O-I-RVFLNs | 60 | 2.8696 | 3.0851 |
算法 | 隐层节点数 | 迭代次数 | 训练时间 | 测试时间 | RMSE | |||
---|---|---|---|---|---|---|---|---|
Training | Testing | |||||||
Heating load | Cooling load | Heating load | Cooling load | |||||
I-RVFLNs | 1000 | 1000 | 5.7600 | 0.9840 | 2.6126 | 3.0687 | 3.4773 | 3.7051 |
EI-RVFLNs | 842 | 842 | 8.8090 | 0.8340 | 2.5144 | 3.0250 | 3.1070 | 3.4349 |
O-I-RVFLNs | 158 | 158 | 3.2600 | 0.1540 | 2.3604 | 2.9174 | 2.6709 | 2.9803 |
Table 2 Comparison of modeling results of different incremental random vector functional-link networks algorithms
算法 | 隐层节点数 | 迭代次数 | 训练时间 | 测试时间 | RMSE | |||
---|---|---|---|---|---|---|---|---|
Training | Testing | |||||||
Heating load | Cooling load | Heating load | Cooling load | |||||
I-RVFLNs | 1000 | 1000 | 5.7600 | 0.9840 | 2.6126 | 3.0687 | 3.4773 | 3.7051 |
EI-RVFLNs | 842 | 842 | 8.8090 | 0.8340 | 2.5144 | 3.0250 | 3.1070 | 3.4349 |
O-I-RVFLNs | 158 | 158 | 3.2600 | 0.1540 | 2.3604 | 2.9174 | 2.6709 | 2.9803 |
算法 | 隐层节点数目 | 训练时间 | 测试时间 | RMSE | |||
---|---|---|---|---|---|---|---|
[Si] | [P] | [S] | MIT | ||||
I-RVFLNs | 1000 | 2.6090 | 0.2630 | 0.1177 | 0.0083 | 0.0057 | 9.1580 |
EI-RVFLNs | 943 | 11.1340 | 0.2410 | 0.1172 | 0.0080 | 0.0055 | 9.1565 |
O-I-RVFLNs | 173 | 2.1330 | 0.0490 | 0.1156 | 0.0078 | 0.0054 | 8.9221 |
Table 3 Comparison of modeling results of molten iron quality based on different incremental random vector functional-link networks algorithms
算法 | 隐层节点数目 | 训练时间 | 测试时间 | RMSE | |||
---|---|---|---|---|---|---|---|
[Si] | [P] | [S] | MIT | ||||
I-RVFLNs | 1000 | 2.6090 | 0.2630 | 0.1177 | 0.0083 | 0.0057 | 9.1580 |
EI-RVFLNs | 943 | 11.1340 | 0.2410 | 0.1172 | 0.0080 | 0.0055 | 9.1565 |
O-I-RVFLNs | 173 | 2.1330 | 0.0490 | 0.1156 | 0.0078 | 0.0054 | 8.9221 |
1 | Igelnik B, Pao Y H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net[J]. IEEE Trans. Neural Networks, 1995, 6(6): 1320-1329. |
2 | Pao Y H, Takefuji Y. Functional-link net computing: theory, system, architecture, and functionalities[J]. Computer, 1992, 25(2): 76-79. |
3 | Suganthan P N. On non-iterative learning algorithms with closed-form solution[J]. Applied Soft Computing, 2018, 70: 1078-1082. |
4 | Ren Y, Suganthan P N, Srikanth N, et al. Random vector functional link network for short-term electricity load demand forecasting[J]. Information Sciences, 2016, 367: 1078-1093. |
5 | Zhou P, Lv Y B, Wang H, et al. Data-driven robust RVFLNs modeling of blast furnace ironmaking process using Cauchy distribution weighted M-estimation[J]. IEEE Trans. Industrial Electronics, 2017, 64(9): 7141-7151. |
6 | Dai W, Chen Q X, Chu F. Robust regularized random vector functional link network and its industrial application [J]. IEEE Access, 2017, 5: 16162-16172. |
7 | Pratama M, Angelov P P, Lughofer E, et al. Parsimonious random vector functional link network for data streams [J]. Information Science, 2018, 430/431: 519-537. |
8 | Zhang L, Suganthan P N. Visual tracking with convolutional random vector functional link network [J]. IEEE Trans. Cybernetics, 2017, 47(10): 3243-3253. |
9 | Dai W, Liu Q, Chai T Y. Particle size estimate of grinding processes using random vector functional link networks with improved robustness[J]. Neurocomputing, 2015, 169: 361-372. |
10 | Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501. |
11 | Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Trans. Syst., Man, Cybern. Syst., 2012, 42(2): 513-529. |
12 | Oneto L, Fumeo E, Clerico G. Dynamic delay predictions for large-scale railway networks: deep and shallow extreme learning machines tuned via thresholdout[J]. IEEE Trans. Syst., Man, Cybern. Syst., 2017, 47(10): 2754-2767. |
13 | 贺敏, 汤健, 郭旭琦, 等. 基于流形正则化域适应随机权神经网络的湿式球磨机负荷参数软测量[J]. 自动化学报, 2019, 45(2): 398-406. |
He M, Tang J, Guo X Q, et al. Soft sensor for ball mill load using DAMRRWNN model[J]. Acta Automatica Sinica, 2019, 45(2): 398-406. | |
14 | Huang G B, Lei C, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden node[J]. IEEE Trans. Neural Networks, 2006, 17(4): 879-892. |
15 | Zhang L, Zhou P, Song H D, et al. Multivariable dynamic modeling for molten iron quality using incremental random vector functional-link networks[J]. Journal of Iron and Steel Research International, 2016, 23(11): 1151-1159. |
16 | Ying L. Orthogonal incremental extreme learning machine for regression and multiclass classification[J]. Neural Computing and Applications. 2016, 27(1): 111-120. |
17 | Huang G, Chen L. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(16): 3460-3468. |
18 | Huang G, Chen L. Convex incremental extreme learning machine[J]. Neurocomputing, 2007, 70(16): 16-18. |
19 | Barron A R. Universal approximation bounds for superpositions of a sigmoidal function[J]. IEEE Trans. Information Theory, 1993, 39(3): 930-945. |
20 | Jian L, Gao C H, Xia Z H. Constructing multiple kernel learning framework for blast furnace automation[J]. IEEE Trans. Automation Science and Engineering, 2012, 9(4): 763-777. |
21 | 宋贺达, 周平, 王宏, 等. 高炉炼铁过程多元铁水质量非线性子空间建模及应用[J]. 自动化学报, 2016, 42(21): 1664-1679. |
Song H D, Zhou P, Wang H, et al. Nonlinear subspace modeling of multivariate molten iron quality in blast furnace ironmaking and its application[J]. Acta Automatica Sinica, 2016, 42(21): 1664-1679. | |
22 | Zhou P, Guo D, Wang H, et al. Data-driven robust M-LS-SVR-based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking[J]. IEEE Trans. Neural Networks & Learning Systems, 2018, 29(9): 4007-4021. |
23 | 宋菁华, 杨春节, 周哲, 等. 改进型EMD-Elman神经网络在铁水硅含量预测中的应用[J]. 化工学报, 2016, 67(3): 729-735. |
Song J H, Yang C J, Zhou Z, et al. Application of improved EMD-Elman neural network to predict silicon content in hot metal[J]. CIESC Journal, 2016, 67(3): 729-735. | |
24 | 李泽龙, 杨春节, 刘文辉, 等. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997. |
Li Z L, Yang C J, Liu W H, et al. Research on hot metal Si-content prediction based on LSTM-RNN[J]. CIESC Journal, 2018, 69(3): 992-997. | |
25 | 蒋朝辉, 董梦林, 桂卫华, 等. 基于Bootstrap 的高炉铁水硅含量二维预报[J]. 自动化学报, 2016, 42(5): 715-723. |
Jiang Z H, Dong M L, Gui W H, et al. Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap[J]. Acta Automatica Sinica, 2016, 42(5): 715-723. | |
26 | Zhou P, Yuan M, Wang H, et al. Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections[J]. Information Sciences, 2015, 325: 237-255. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[6] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[7] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[8] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[9] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[13] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[14] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[15] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||