CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 646-652.DOI: 10.11949/j.issn.0438-1157.20180767
• Process system engineering • Previous Articles Next Articles
Zhuang ZHANG1(
),Chun DENG1(
),Hailan SUN2,Xiao FENG3
Received:2018-07-09
Revised:2018-09-06
Online:2019-02-05
Published:2019-02-05
Contact:
Chun DENG
通讯作者:
邓春
作者简介:<named-content content-type="corresp-name">张壮</named-content>(1994—),男,硕士研究生,<email>740057652@qq.com</email>|邓春(1984—),男,副教授,<email>chundeng@foxmail.com</email>
基金资助:CLC Number:
Zhuang ZHANG, Chun DENG, Hailan SUN, Xiao FENG. Modeling and material balance analysis of desalination systems[J]. CIESC Journal, 2019, 70(2): 646-652.
张壮, 邓春, 孙海兰, 冯霄. 除盐水系统建模与物料衡算分析[J]. 化工学报, 2019, 70(2): 646-652.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180767
| Process unit | Water production ratio | Conductivity/ (μS·cm-1) |
|---|---|---|
| UF unit | 0.85 | 200 |
| concentrate UF unit | 0.75 | 400 |
| RO unit | 0.85 | 60 |
| anion and cation bed unit | 0.95 | 5 |
Table 1 Parameters of semi-continuous units
| Process unit | Water production ratio | Conductivity/ (μS·cm-1) |
|---|---|---|
| UF unit | 0.85 | 200 |
| concentrate UF unit | 0.75 | 400 |
| RO unit | 0.85 | 60 |
| anion and cation bed unit | 0.95 | 5 |
| C | ——水杂质集合 | |
|---|---|---|
| ——进口水杂质浓度上限,μS·cm-1 | ||
| ——出口水杂质浓度上限,μS·cm-1 | ||
| Cwc | ——新鲜水杂质浓度,μS·cm-1 | |
| ——在时间间隔t内进入半连续单元i的水杂质浓度,μS·cm-1 | ||
| ——在时间间隔t内从半连续单元i出来的水杂质浓度,μS·cm-1 | ||
| ——在时间间隔t内进储罐s的水杂质浓度,μS·cm-1 | ||
| ——在时间间隔t内出储罐s的水杂质浓度,μS·cm-1 | ||
| ——在时间点t从储罐s出来的水杂质浓度,μS·cm-1 | ||
| ——储罐s进口水体积流量下限,t·h-1 | ||
| ——储罐s进口水体积流量上限,t·h-1 | ||
| ——进入半连续单元i的水体积流量,t·h-1 | ||
| ——从半连续单元i出来的的水体积流量,t·h-1 | ||
fist | ——在时间间隔t内从半连续单元i进储罐s的水体积流量,t·h-1 | |
| ——在时间间隔t内进半连续单元i产品水体积流量,t·h-1 | ||
| ——在时间间隔t内半连续单元i产浓缩水体积流量,t·h-1 | ||
fsit | ——在时间间隔t内从储罐s进半连续单元i的水体积流量,t·h-1 | |
| ——在时间间隔t内进储罐s的水体积流量,t·h-1 | ||
| ——在时间间隔t内出储罐s的水体积流量,t·h-1 | ||
fwit | ——在时间间隔t内新鲜水进半连续单元i的水体积流量,t·h-1 | |
| Isc | ——半连续单元集合 | |
| ——储罐s容量 | ||
| qst | ——在时间点t储罐s内水量 | |
| Ri | ——产水率 | |
| S | ——储罐集合 | |
| T | ——时间集合 | |
| W | ——新鲜水集合 | |
| Δt | ——时间间隔长度,h | |
| ?1 | ——新鳟水消耗的总量 | |
| 上角标 | ||
| cap | ——容量 | |
| in | ——入口 | |
| L | ——下限 | |
| max | ——最大值 | |
| out | ——出口 | |
| prod | ——产品水 | |
| resd | ——浓缩水 | |
| U | ——上限 | |
| 下角标 | ||
| c | ——水质指标,杂质浓度 | |
| i | ——半连续单元 | |
| s | ——储罐 | |
| T | ——某时刻,时间点 | |
| t | ——时间 | |
| t-1 | ——上一个操作时间点 | |
| w | ——水源 | |
| C | ——水杂质集合 | |
|---|---|---|
| ——进口水杂质浓度上限,μS·cm-1 | ||
| ——出口水杂质浓度上限,μS·cm-1 | ||
| Cwc | ——新鲜水杂质浓度,μS·cm-1 | |
| ——在时间间隔t内进入半连续单元i的水杂质浓度,μS·cm-1 | ||
| ——在时间间隔t内从半连续单元i出来的水杂质浓度,μS·cm-1 | ||
| ——在时间间隔t内进储罐s的水杂质浓度,μS·cm-1 | ||
| ——在时间间隔t内出储罐s的水杂质浓度,μS·cm-1 | ||
| ——在时间点t从储罐s出来的水杂质浓度,μS·cm-1 | ||
| ——储罐s进口水体积流量下限,t·h-1 | ||
| ——储罐s进口水体积流量上限,t·h-1 | ||
| ——进入半连续单元i的水体积流量,t·h-1 | ||
| ——从半连续单元i出来的的水体积流量,t·h-1 | ||
fist | ——在时间间隔t内从半连续单元i进储罐s的水体积流量,t·h-1 | |
| ——在时间间隔t内进半连续单元i产品水体积流量,t·h-1 | ||
| ——在时间间隔t内半连续单元i产浓缩水体积流量,t·h-1 | ||
fsit | ——在时间间隔t内从储罐s进半连续单元i的水体积流量,t·h-1 | |
| ——在时间间隔t内进储罐s的水体积流量,t·h-1 | ||
| ——在时间间隔t内出储罐s的水体积流量,t·h-1 | ||
fwit | ——在时间间隔t内新鲜水进半连续单元i的水体积流量,t·h-1 | |
| Isc | ——半连续单元集合 | |
| ——储罐s容量 | ||
| qst | ——在时间点t储罐s内水量 | |
| Ri | ——产水率 | |
| S | ——储罐集合 | |
| T | ——时间集合 | |
| W | ——新鲜水集合 | |
| Δt | ——时间间隔长度,h | |
| ?1 | ——新鳟水消耗的总量 | |
| 上角标 | ||
| cap | ——容量 | |
| in | ——入口 | |
| L | ——下限 | |
| max | ——最大值 | |
| out | ——出口 | |
| prod | ——产品水 | |
| resd | ——浓缩水 | |
| U | ——上限 | |
| 下角标 | ||
| c | ——水质指标,杂质浓度 | |
| i | ——半连续单元 | |
| s | ——储罐 | |
| T | ——某时刻,时间点 | |
| t | ——时间 | |
| t-1 | ——上一个操作时间点 | |
| w | ——水源 | |
| 1 | National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook -2017 [EB/OL]. |
| 2 | 冯霄, 刘永忠, 沈人杰, 等. 水系统集成优化: 节水减排的系统综合方法[M]. 2版. 北京: 化学工业出版社, 2012. |
| FengX, LiuY Z, ShenR J, et al. Integration and Optimization of Water System: Synthetic Approach of Water Saving and Emissions Reduction[M]. 2nd ed. Beijing: Chemical Industry Press, 2012. | |
| 3 | WangY P, SmithR. Time pinch analysis[J]. Chemical Engineering Research & Design, 1995, 73(A8): 905-914. |
| 4 | WangY P, SmithR. Design of distributed effluent treatment systems[J]. Chemical Engineering Science, 1995, 49(18): 3127-3127. |
| 5 | MajoziT. Brouckaert C J. A graphical technique for wastewater minimisation in batch processes[J]. Journal of Environmental Management, 2006, 78(4): 317-329. |
| 6 | FooD C Y, MananZ A, TanY L. Synthesis of maximum water recovery network for batch process systems[J]. Journal of Cleaner Production, 2005, 13(15): 1381-1394. |
| 7 | LeeK H, ParkH I, LeeI B. A novel nonuniform discrete time formulation for short-term scheduling of batch and continuous process[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4902-4911. |
| 8 | 杨霞, 岳金彩, 毕荣山, 等. 间歇过程单杂质用水网络设计[J]. 化工学报, 2007, 58(1): 161-167. |
| YangX, YueJ C, BiR S, et al. Single impurity water network design of batch process[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(1): 161-167. | |
| 9 | ChenC L, LeeJ Y. A graphical technique for the design of water-using networks in batch process[J]. Chemical Engineering Science, 2008, 63: 3740-3754. |
| 10 | KimJ K. Design of discontinuous water-using systems with a graphical method[J]. Chemical Engineering Journal, 2011, 172: 799-810. |
| 11 | LiB H, LiangY K, ChangC T. Manual design strategies for multicontaminant water-using networks in batch process[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1970-1981. |
| 12 | NunS, FooD C Y, TanR R, et al. Fuzzy automated targeting for trade-off analysis in batch water networks[J]. Asia-Pacific Journal of Chemical Engineering, 2011, 6(3): 537-551. |
| 13 | AlmatoM, EspunaA, PuigjanerL. Optimization of water use in batch process industries[J]. Computers & Chemical Engineering, 1999, 23(10): 1427-1437. |
| 14 | KimJ K, SmithR. Automated design of discontinuous water system[J]. Process Safety and Environmental Protection, 2004, 82(3): 238-248. |
| 15 | MajoziT. Wastewater minimisation using central reusable water storage in batch plants[J]. Computers & Chemical Engineering, 2005, 29 (7): 1631-1646. |
| 16 | 李冠华, 王乐, 刘永忠. 间歇用水系统中废水回用与集中再生处理的调度优化设计方法[J]. 化工学报, 2010, 62(2): 378-383. |
| LiG H, WangL, LiuY Z. Scheduling optimization design method for wastewater reuse and centralized regeneration treatment in bacth water system[J]. CIESC Journal, 2010, 62(2): 378-383. | |
| 17 | 都健, 洪水红, 陈理. 多杂质体系间歇过程用水网络优化[J]. 化工进展, 2012, 31(1): 25-29. |
| DuJ, HongS H, ChenL. Single impurity water network design of batch process[J]. Chemical Industry & Engineering Progress, 2012, 31(1): 25-29. | |
| 18 | ShoaibA M, AlyS M, AwadM E, et al. A hierarchical approach for the synthesis of batch water network[J]. Computers & Chemical Engineering, 2008, 32(3): 530-539. |
| 19 | LiZ W, MajoziT. Dynamic programming for optimal synthesis of water networks in batch processes[J]. Computer Aided Chemical Engineering, 2017, 40: 919-924. |
| 20 | MajoziT. Storage design for maximum wastewater reuse in multipurpose batch plants[J]. Industrial & Engineering Chemistry Research, 2006, 45(17): 5936-5943. |
| 21 | ZhuX X, MajoziT. A novel continuous time MILP formulation for multipurpose batch plants-integrated planning, design and scheduling[J]. Computer Aided Chemical Engineering, 2001, 9: 937-942. |
| 22 | MajoziT, ZhuX X. A combined fuzzy set theory and MILP approach in integration of planning and scheduling of batch plants-Personnel evaluation and allocation[J]. Computers & Chemical Engineering, 2005, 29(9): 2029-2047. |
| 23 | AdekolaO, MajoziT. Wastewater minimization in batch plants with sequence dependent changeover[J]. Computers & Chemical Engineering, 2017, 97(2): 85-103. |
| 24 | ChenC L, ChangC Y, LeeJ Y. Continuous-time formulation for the synthesis of water-using networks in batch plants[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7818-7832. |
| 25 | ChenC L, LeeJ Y, TangJ W, et al. Synthesis of water-using network with central reusable storage in batch processes[J]. Computers & Chemical Engineering, 2009, 33(1): 267-276. |
| 26 | GouwsJ F, MajoziT, FooD C Y, et al. Water minimization techniques for batch processes[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 8877-8893. |
| 27 | 毛文锋. 单杂质间歇过程用水网络优化[D]. 青岛: 青岛科技大学, 2006. |
| MaoW F. Single impurity water network optimization of batch process[D]. Qingdao: Qingdao University of Science and Technology, 2006. | |
| 28 | 程华农, 毛文锋, 郑世清. 基于线性规划的单杂质间歇过程用水最小化[J]. 化工学报, 2007, 58(2): 417-424. |
| ChengH N, MaoW F, ZhengS Q. Water minimization of single impurity batch process water based on linear programming[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(2): 417-424. | |
| 29 | 程华农, 孙杰, 毛文锋, 等. 单杂质间歇过程用水网络优化[J]. 化工进展, 2007, 26(2): 267-270. |
| ChengH N, SunJ, MaoW F, et al. Single impurity water network optimization of batch process [J]. Chemical Industry & Engineering Progress, 2007, 26(2): 267-270. | |
| 30 | ChengK F, ChangC T. Integrated water network designs for batch process[J]. Industrial & Engineering Chemistry Research, 2007, 46(4): 1241-1253. |
| [1] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
| [2] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
| [3] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
| [4] | Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves [J]. CIESC Journal, 2022, 73(7): 2952-2961. |
| [5] | Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions [J]. CIESC Journal, 2022, 73(11): 4974-4986. |
| [6] | Huiyan WANG, Yiqin CHEN, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization [J]. CIESC Journal, 2022, 73(1): 376-383. |
| [7] | JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105. |
| [8] | Yuanxin FANG, Wu XIAO, Xiaobin JIANG, Xiangcun LI, Gaohong HE, Xuemei WU. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid [J]. CIESC Journal, 2021, 72(9): 4740-4749. |
| [9] | Xuming LIANG, Yongchao SHEN, Dong WEI, Qian GUO, Zhi GAO. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics [J]. CIESC Journal, 2021, 72(8): 4361-4370. |
| [10] | LI Mingchuan, FAN Shuanshi, XU Fuhai, YAN Ke, HUANG Aixian. Mathematical modeling of Stefan phase change for thermal dissociation of natural gas hydrate [J]. CIESC Journal, 2021, 72(6): 3252-3260. |
| [11] | CHEN Yiqin, XU Yu, ZHOU Jinghong, SUI Zhijun, ZHOU Xinggui. Heterogeneous modeling and internal mass transfer mechanism of lithium-ion batteries: effect of particle size distribution [J]. CIESC Journal, 2021, 72(2): 1078-1088. |
| [12] | Huachen QIU, Junhong HAO, Jianxun REN. Influence on performance of thermoelectric cooling devices of thermal conductance distribution between hot and cold ends [J]. CIESC Journal, 2020, 71(S2): 39-45. |
| [13] | Jie ZHANG, Liping PANG, Hongquan QU, Tianbo WANG. Multi-condition thermal models of avionics pod using stochastic configuration network [J]. CIESC Journal, 2020, 71(S1): 441-447. |
| [14] | Shuangchen MA, Quan ZHOU, Jianzong CAO, Qi LIU, Wentong CHEN, Shuaijun FAN, Yakun YAO, Chenyu LIN, Caini MA. Modeling and simulation of wet desulfurization system dynamic process [J]. CIESC Journal, 2020, 71(8): 3741-3751. |
| [15] | Xianyi YU, Jianghong WU, Yunhui GAO. Research on refrigerant leakage identification for heat pump system based on PCA-SVM models [J]. CIESC Journal, 2020, 71(7): 3151-3164. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||