1 |
李幼凤, 苏宏业, 褚健. 子空间模型辨识方法综述[J]. 化工学报, 2006, 57(3): 473-479.
|
|
LiY F, SuH Y, ChuJ. Overview on subspace model identification methods[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(3): 473-479.
|
2 |
吕恩辉, 王雪松, 程玉虎. 基于反卷积特征提取的深度卷积神经网络学习[J]. 控制与决策, 2018, 33(3): 447-454.
|
|
LyuE H, WangX S, ChengY H. Deep convolution neural network learning based on deconvolution feature extraction[J]. Control and Decision, 2018, 33(3): 447-454.
|
3 |
BekirogluK, LagoaC, LanzaS T, et al. System identification algorithm for non-uniformly sample data[J]. IFAC-PaperOnLine, 2017, 50(1): 7296-7301.
|
4 |
FeldmanM, BraunS. Nonlinear vibrating system identification via Hilbert decomposition[J]. Mechanical Systems and Signal Processing, 2017, 84(B): 65-96.
|
5 |
ZhangX Y, HoaggJ B. Subsystem identification of multivariable feedback and feedforward systems[J]. Automatica, 2016, 72: 131-137.
|
6 |
张伟, 许爱强, 平殿发. 基于稀疏化核方法的非线性动态系统在线辨识[J]. 系统工程与电子技术, 2017, 39(1): 223-230.
|
|
ZhangW, XuA Q, PingD F. Nonlinear system online identification based on kernel sparse learning algorithm with adaptive regulation factor[J]. Systems Engineering and Electronics, 2017, 39(1): 223-230.
|
7 |
张亚军, 柴天佑, 杨杰. 一类非线性离散时间动态系统的交替辨识算法及应用[J]. 自动化学报, 2017, 43(1): 101-113.
|
|
ZhangY J, ChaiT Y, YangJ. Alternating identification algorithm and its application to a class of nonlinear discrete-time dynamical systems[J]. Acta Automatica Sinica, 2017, 43(1): 101-113.
|
8 |
SchoukensM, TieldsK. Identification of block-oriented nonlinear systems starting from linear approximations: a survey[J]. Automatica, 2017, 85: 272-292.
|
9 |
ChamC L, TanA H, TanW H. Identification of a multivariable nonlinear and time-varying mist reactor system[J]. Control Engineering Practice, 2017, 63: 13-23.
|
10 |
李寒霜, 赵忠盖, 刘飞. 基于变分贝叶斯算法的线性变参数系统辨识[J]. 化工学报, 2018, 69(7): 3125-3134.
|
|
LiH S, ZhaoZ G, LiuF. Identification of linear parameter varying systems with variational Bayesian algorithm[J]. CIESC Journal, 2018, 69(7): 3125-3134.
|
11 |
罗健旭, 邵惠鹤. 应用多神经网络建立动态软测量模型[J]. 化工学报, 2003, 54(12): 1770-1773.
|
|
LuoJ X, ShaoH J. Developing dynamic soft sensors using multiple neural networks[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(12): 1770-1773.
|
12 |
白晶, 毛志忠, 浦铁成. 多变量Hammerstein-Wiener模型的参数辨识[J]. 东北大学学报(自然科学版), 2018, (1): 6-10.
|
|
BaiJ, MaoZ Z, PuT C. Parameter identification of multivariate Hammerstein-Wiener model[J]. Journal of Northeastern University(Natural Science), 2018, (1): 6-10.
|
13 |
叶健, 葛临东, 吴月娴. 一种优化的RBF神经网络在调制识别中的应用[J]. 自动化学报, 2007, 33(6): 652-654.
|
|
YeJ, GeL D, WuY X. An application of improved RBF neural network in modulation recognition[J]. Acta Automatica Sinica, 2007, 33(6): 652-654.
|
14 |
韩红桂, 乔俊飞, 薄迎春. 基于信息强度的RBF神经网络结构设计研究[J]. 自动化学报, 2012, 38(7): 1083-1090.
|
|
HanH G, QiaoJ F, BoY C. On structure design for RBF neural network based on information strength[J]. Acta Automatica Sinica, 2012, 38(7): 1083-1090.
|
15 |
黄晓峰, 潘立登. 基于增广RBF神经网络的混沌系统辨识[J]. 北京化工大学学报, 1999, 26(1): 45-48.
|
|
HuangX F, PanL D. Identifying chaotic system using extended RBF neural net work[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 1999, 26(1): 45-48.
|
16 |
董均华, 徐向东. 基于RBF神经网络的热力系统煤种辨识方法[J]. 清华大学学报, 2006, 46(8): 1430-1433.
|
|
DongJ H, XuX D. Coal-information online identification based on RBF neural network[J]. Journal of Tsinghua University(Science and Technology), 2006, 46(8): 1430-1433.
|
17 |
樊兆峰, 马小平, 邵晓根. 非线性系统RBF神经网络多步预测控制[J]. 控制与决策, 2014, 29(7): 1274-1278.
|
|
FanZ F, MaX P, ShaoX G. RBF neural network multi-step predictive control for nonlinear systems[J]. Control and Decision, 2014, 29(7): 1274-1278.
|
18 |
WalczakB, MassartD L. The radial basis function-partial least squares approach as a flexible non-linear regression technique[J]. Analytical Chemical Acta, 1996, 331(3): 177-185.
|
19 |
方甜莲, 贾力. 含有色噪声的神经模糊Hammerstein模型分离辨识[J]. 控制理论与应用, 2016, 33(1): 23-31.
|
|
FangT L, JiaL. Separation identification of neuro-fuzzy Hammerstein model with colored noise[J]. Control Theory and Application, 2016, 33(1): 23-31.
|
20 |
DingF, ChenT. Identification of Hammerstein nonlinear ARMAX systems[J]. Automatica, 2005, 41(9): 1479-1489.
|
21 |
GrbicR, ScitovskiK, SaboK, et al. Approximating surfaces by the moving least absolute deviations method[J]. Applied Mathematics & Computation, 2013, 219(9): 4387-4399.
|
22 |
KelkinnamaM, TaheriS M. Fuzzy least-absolutes regression using shape preserving operations[J]. Information Sciences, 2012, 214(10): 105-120.
|
23 |
DongJ, XieK G. Research of the non-linear regress models based on the least absolute criteria[J]. Journal of Chongqing Normal University (Natural Science Edition), 2001, 18(4): 71-74.
|
24 |
徐宝昌, 林忠华, 肖玉月. 基于近似偏小一乘的闭环系统辨识新方法[J]. 控制理论与应用, 2016, 33(11): 1543-1551.
|
|
XuB C, LinZ H, XiaoY Y. Identification of closed-loop system by partial least absolute deviation[J]. Control Theory & Applications, 2016, 33(11): 1543-1551.
|
25 |
徐宝昌, 张华, 王学敏. 基于近似偏最小一乘准则的多变量非线性系统辨识方法[J]. 化工学报, 2018, 69(3): 1129-1135.
|
|
XuB C, ZhangH, WangX M. Partial approximate least absolute deviation for multivariable nonlinear system identification[J]. CIESC Journal, 2018, 69(3): 1129-1135.
|
26 |
王桂增, 叶昊. 主元分析与偏最小二乘法[M]. 北京: 清华大学出版社, 2012.
|
|
WangG Z, YeH. Principal Component Analysis and Partial Least Squares Method[M]. Beijing: Tsinghua University Press, 2012.
|
27 |
KangS H, SandbergB, YipA M. A regularized k-means and multiphase scale segmentation[J]. Inverse Problems & Imaging, 2017, 5(2): 407-429.
|
28 |
KamperH, LivescuK, GoldwaterS. An embedded segmental k-means model for unsupervised segmentation and clustering of speech[C]//IEEE Automatic Speech Recognition and Understanding Workshop. IEEE, 2017: 719-726.
|
29 |
HlaingY M, ChiuM S, LakshminarayananS. Modeling and control of multivariable process using generalized Hammerstein model[J]. Chemical Engineering Research & Design, 2007, 85(4): 445-454.
|
30 |
CoatesM J, KuruogluE E. Time-frequency based detection in impulsive noise environments using alpha-stable noise model[J]. Digital Signal Processing, 2002, 82(3): 1917-1925.
|