CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 653-660.DOI: 10.11949/j.issn.0438-1157.20180857
• Process system engineering • Previous Articles Next Articles
Baochang XU1(),Hua ZHANG1,Jinshan WANG2
Received:
2018-07-25
Revised:
2018-10-19
Online:
2019-02-05
Published:
2019-02-05
Contact:
Baochang XU
通讯作者:
徐宝昌
作者简介:
徐宝昌(1974—),男,博士,副教授,<email>xbcyl@163.com</email>
基金资助:
CLC Number:
Baochang XU, Hua ZHANG, Jinshan WANG. Partial approximate least absolute deviation for nonlinear system identification based on radial basis function[J]. CIESC Journal, 2019, 70(2): 653-660.
徐宝昌, 张华, 王金山. 基于径向基函数的非线性系统近似偏最小一乘准则辨识算法[J]. 化工学报, 2019, 70(2): 653-660.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180857
Algorithm | a11 | a22 | b11 | b22 | c12 | c22 | |
---|---|---|---|---|---|---|---|
RBF-PALAD | 0.9625 | 0.9029 | 0.0613 | -0.1387 | 0.3342 | 2.5840 | 1.65 |
RBF-PLS | 0.9610 | 0.9036 | 0.0638 | -0.1740 | 0.2464 | 2.0926 | 0.59 |
RBF-ALAD | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
true value | 0.9608 | 0.9048 | 0.0699 | -0.1748 | 0.2735 | 2.0381 | 0 |
Table 1 Identified results when white noise exists only
Algorithm | a11 | a22 | b11 | b22 | c12 | c22 | |
---|---|---|---|---|---|---|---|
RBF-PALAD | 0.9625 | 0.9029 | 0.0613 | -0.1387 | 0.3342 | 2.5840 | 1.65 |
RBF-PLS | 0.9610 | 0.9036 | 0.0638 | -0.1740 | 0.2464 | 2.0926 | 0.59 |
RBF-ALAD | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
true value | 0.9608 | 0.9048 | 0.0699 | -0.1748 | 0.2735 | 2.0381 | 0 |
Algorithm | a11 | a22 | b11 | b22 | c12 | c22 | δ/% |
---|---|---|---|---|---|---|---|
RBF-PALAD | 0.9589 | 0.9088 | 0.0477 | -0.1188 | 0.3742 | 3.1502 | 5.37 |
RBF-PLS | 0.9541 | 0.9173 | 0.0076 | -0.2887 | 2.0352 | 1.2742 | 6.39 |
true value | 0.9608 | 0.9048 | 0.0699 | -0.1748 | 0.2735 | 2.0381 | 0 |
Table 2 Identified results when α=1.5
Algorithm | a11 | a22 | b11 | b22 | c12 | c22 | δ/% |
---|---|---|---|---|---|---|---|
RBF-PALAD | 0.9589 | 0.9088 | 0.0477 | -0.1188 | 0.3742 | 3.1502 | 5.37 |
RBF-PLS | 0.9541 | 0.9173 | 0.0076 | -0.2887 | 2.0352 | 1.2742 | 6.39 |
true value | 0.9608 | 0.9048 | 0.0699 | -0.1748 | 0.2735 | 2.0381 | 0 |
Algorithm | a11 | a22 | b11 | b22 | c12 | c22 | δ/% |
---|---|---|---|---|---|---|---|
RBF-PALAD | 0.9605 | 0.9058 | 0.0482 | -0.1950 | 0.3903 | 1.5724 | 2.52 |
RBF-PLS | 0.9543 | 0.9132 | -0.0345 | -0.4892 | -0.10835 | 0.6921 | 17.47 |
true value | 0.9608 | 0.9048 | 0.0699 | -0.1748 | 0.2735 | 2.0381 | 0 |
Table 3 Identified results when α=1.2
Algorithm | a11 | a22 | b11 | b22 | c12 | c22 | δ/% |
---|---|---|---|---|---|---|---|
RBF-PALAD | 0.9605 | 0.9058 | 0.0482 | -0.1950 | 0.3903 | 1.5724 | 2.52 |
RBF-PLS | 0.9543 | 0.9132 | -0.0345 | -0.4892 | -0.10835 | 0.6921 | 17.47 |
true value | 0.9608 | 0.9048 | 0.0699 | -0.1748 | 0.2735 | 2.0381 | 0 |
Algorithm | a11 | a22 | b11 | b22 | c12 | c22 | δ/% |
---|---|---|---|---|---|---|---|
RBF-PALAD | 0.9195 | 0.0596 | 1.0655 | -0.1284 | 1.7075 | 3.0427 | 7.55 |
RBF-PLS | 0.9571 | 0.9023 | -0.2999 | -1.3921 | -0.3546 | 0.1617 | 70.00 |
true value | 0.9608 | 0.9048 | 0.0699 | -0.1748 | 0.2735 | 2.0381 | 0 |
Table 4 Identified results when α=0.9
Algorithm | a11 | a22 | b11 | b22 | c12 | c22 | δ/% |
---|---|---|---|---|---|---|---|
RBF-PALAD | 0.9195 | 0.0596 | 1.0655 | -0.1284 | 1.7075 | 3.0427 | 7.55 |
RBF-PLS | 0.9571 | 0.9023 | -0.2999 | -1.3921 | -0.3546 | 0.1617 | 70.00 |
true value | 0.9608 | 0.9048 | 0.0699 | -0.1748 | 0.2735 | 2.0381 | 0 |
1 | 李幼凤, 苏宏业, 褚健. 子空间模型辨识方法综述[J]. 化工学报, 2006, 57(3): 473-479. |
LiY F, SuH Y, ChuJ. Overview on subspace model identification methods[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(3): 473-479. | |
2 | 吕恩辉, 王雪松, 程玉虎. 基于反卷积特征提取的深度卷积神经网络学习[J]. 控制与决策, 2018, 33(3): 447-454. |
LyuE H, WangX S, ChengY H. Deep convolution neural network learning based on deconvolution feature extraction[J]. Control and Decision, 2018, 33(3): 447-454. | |
3 | BekirogluK, LagoaC, LanzaS T, et al. System identification algorithm for non-uniformly sample data[J]. IFAC-PaperOnLine, 2017, 50(1): 7296-7301. |
4 | FeldmanM, BraunS. Nonlinear vibrating system identification via Hilbert decomposition[J]. Mechanical Systems and Signal Processing, 2017, 84(B): 65-96. |
5 | ZhangX Y, HoaggJ B. Subsystem identification of multivariable feedback and feedforward systems[J]. Automatica, 2016, 72: 131-137. |
6 | 张伟, 许爱强, 平殿发. 基于稀疏化核方法的非线性动态系统在线辨识[J]. 系统工程与电子技术, 2017, 39(1): 223-230. |
ZhangW, XuA Q, PingD F. Nonlinear system online identification based on kernel sparse learning algorithm with adaptive regulation factor[J]. Systems Engineering and Electronics, 2017, 39(1): 223-230. | |
7 | 张亚军, 柴天佑, 杨杰. 一类非线性离散时间动态系统的交替辨识算法及应用[J]. 自动化学报, 2017, 43(1): 101-113. |
ZhangY J, ChaiT Y, YangJ. Alternating identification algorithm and its application to a class of nonlinear discrete-time dynamical systems[J]. Acta Automatica Sinica, 2017, 43(1): 101-113. | |
8 | SchoukensM, TieldsK. Identification of block-oriented nonlinear systems starting from linear approximations: a survey[J]. Automatica, 2017, 85: 272-292. |
9 | ChamC L, TanA H, TanW H. Identification of a multivariable nonlinear and time-varying mist reactor system[J]. Control Engineering Practice, 2017, 63: 13-23. |
10 | 李寒霜, 赵忠盖, 刘飞. 基于变分贝叶斯算法的线性变参数系统辨识[J]. 化工学报, 2018, 69(7): 3125-3134. |
LiH S, ZhaoZ G, LiuF. Identification of linear parameter varying systems with variational Bayesian algorithm[J]. CIESC Journal, 2018, 69(7): 3125-3134. | |
11 | 罗健旭, 邵惠鹤. 应用多神经网络建立动态软测量模型[J]. 化工学报, 2003, 54(12): 1770-1773. |
LuoJ X, ShaoH J. Developing dynamic soft sensors using multiple neural networks[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(12): 1770-1773. | |
12 | 白晶, 毛志忠, 浦铁成. 多变量Hammerstein-Wiener模型的参数辨识[J]. 东北大学学报(自然科学版), 2018, (1): 6-10. |
BaiJ, MaoZ Z, PuT C. Parameter identification of multivariate Hammerstein-Wiener model[J]. Journal of Northeastern University(Natural Science), 2018, (1): 6-10. | |
13 | 叶健, 葛临东, 吴月娴. 一种优化的RBF神经网络在调制识别中的应用[J]. 自动化学报, 2007, 33(6): 652-654. |
YeJ, GeL D, WuY X. An application of improved RBF neural network in modulation recognition[J]. Acta Automatica Sinica, 2007, 33(6): 652-654. | |
14 | 韩红桂, 乔俊飞, 薄迎春. 基于信息强度的RBF神经网络结构设计研究[J]. 自动化学报, 2012, 38(7): 1083-1090. |
HanH G, QiaoJ F, BoY C. On structure design for RBF neural network based on information strength[J]. Acta Automatica Sinica, 2012, 38(7): 1083-1090. | |
15 | 黄晓峰, 潘立登. 基于增广RBF神经网络的混沌系统辨识[J]. 北京化工大学学报, 1999, 26(1): 45-48. |
HuangX F, PanL D. Identifying chaotic system using extended RBF neural net work[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 1999, 26(1): 45-48. | |
16 | 董均华, 徐向东. 基于RBF神经网络的热力系统煤种辨识方法[J]. 清华大学学报, 2006, 46(8): 1430-1433. |
DongJ H, XuX D. Coal-information online identification based on RBF neural network[J]. Journal of Tsinghua University(Science and Technology), 2006, 46(8): 1430-1433. | |
17 | 樊兆峰, 马小平, 邵晓根. 非线性系统RBF神经网络多步预测控制[J]. 控制与决策, 2014, 29(7): 1274-1278. |
FanZ F, MaX P, ShaoX G. RBF neural network multi-step predictive control for nonlinear systems[J]. Control and Decision, 2014, 29(7): 1274-1278. | |
18 | WalczakB, MassartD L. The radial basis function-partial least squares approach as a flexible non-linear regression technique[J]. Analytical Chemical Acta, 1996, 331(3): 177-185. |
19 | 方甜莲, 贾力. 含有色噪声的神经模糊Hammerstein模型分离辨识[J]. 控制理论与应用, 2016, 33(1): 23-31. |
FangT L, JiaL. Separation identification of neuro-fuzzy Hammerstein model with colored noise[J]. Control Theory and Application, 2016, 33(1): 23-31. | |
20 | DingF, ChenT. Identification of Hammerstein nonlinear ARMAX systems[J]. Automatica, 2005, 41(9): 1479-1489. |
21 | GrbicR, ScitovskiK, SaboK, et al. Approximating surfaces by the moving least absolute deviations method[J]. Applied Mathematics & Computation, 2013, 219(9): 4387-4399. |
22 | KelkinnamaM, TaheriS M. Fuzzy least-absolutes regression using shape preserving operations[J]. Information Sciences, 2012, 214(10): 105-120. |
23 | DongJ, XieK G. Research of the non-linear regress models based on the least absolute criteria[J]. Journal of Chongqing Normal University (Natural Science Edition), 2001, 18(4): 71-74. |
24 | 徐宝昌, 林忠华, 肖玉月. 基于近似偏小一乘的闭环系统辨识新方法[J]. 控制理论与应用, 2016, 33(11): 1543-1551. |
XuB C, LinZ H, XiaoY Y. Identification of closed-loop system by partial least absolute deviation[J]. Control Theory & Applications, 2016, 33(11): 1543-1551. | |
25 | 徐宝昌, 张华, 王学敏. 基于近似偏最小一乘准则的多变量非线性系统辨识方法[J]. 化工学报, 2018, 69(3): 1129-1135. |
XuB C, ZhangH, WangX M. Partial approximate least absolute deviation for multivariable nonlinear system identification[J]. CIESC Journal, 2018, 69(3): 1129-1135. | |
26 | 王桂增, 叶昊. 主元分析与偏最小二乘法[M]. 北京: 清华大学出版社, 2012. |
WangG Z, YeH. Principal Component Analysis and Partial Least Squares Method[M]. Beijing: Tsinghua University Press, 2012. | |
27 | KangS H, SandbergB, YipA M. A regularized k-means and multiphase scale segmentation[J]. Inverse Problems & Imaging, 2017, 5(2): 407-429. |
28 | KamperH, LivescuK, GoldwaterS. An embedded segmental k-means model for unsupervised segmentation and clustering of speech[C]//IEEE Automatic Speech Recognition and Understanding Workshop. IEEE, 2017: 719-726. |
29 | HlaingY M, ChiuM S, LakshminarayananS. Modeling and control of multivariable process using generalized Hammerstein model[J]. Chemical Engineering Research & Design, 2007, 85(4): 445-454. |
30 | CoatesM J, KuruogluE E. Time-frequency based detection in impulsive noise environments using alpha-stable noise model[J]. Digital Signal Processing, 2002, 82(3): 1917-1925. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy [J]. CIESC Journal, 2023, 74(7): 2967-2978. |
[3] | Libang LIU, Song YANG, Zhijian WANG, Xinxin HE, Wenlei ZHAO, Shoujun LIU, Wenguang DU, Jie MI. Prediction of coke quality based on improved WOA-LSTM [J]. CIESC Journal, 2022, 73(3): 1291-1299. |
[4] | LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis [J]. CIESC Journal, 2021, 72(3): 1616-1626. |
[5] | ZHU Xiongzhuo, ZHANG Hanwen, YANG Chunjie. MWPCA blast furnace anomaly monitoring algorithm based on Gaussian mixture model [J]. CIESC Journal, 2021, 72(3): 1539-1548. |
[6] | Hongbiao ZHOU, Yu ZHANG, Xiaoying BAI, Baolian LIU, Huanyu ZHAO. Model predictive control of nonlinear system based on adaptive fuzzy neural network [J]. CIESC Journal, 2020, 71(7): 3201-3212. |
[7] | Wei CHAI, Longhang GUO, Binbin CHI. Interval model for predicting effluent quality variables of wastewater treatment plants [J]. CIESC Journal, 2019, 70(9): 3449-3457. |
[8] | Xiaoqin LIAN, Liwei WANG, Sa AN, Wei WEI, Zaiwen LIU. On soft sensor of chemical oxygen demand by SOM-RBF neural network [J]. CIESC Journal, 2019, 70(9): 3465-3472. |
[9] | Jiawei DENG, Xiaogang DENG, Yuping CAO, Xiaoling ZHANG. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA [J]. CIESC Journal, 2019, 70(7): 2594-2605. |
[10] | Junmiao TANG, Haizhen YU, Xuhua SHI, Chudong TONG. Dynamic monitoring of chemical processes based on latent variable auto-regressive algorithm [J]. CIESC Journal, 2019, 70(3): 987-994. |
[11] | Kun ZHAI, Wenxia DU, Feng LYU, Tao XIN, Xiyuan JU. Fault detect method based on improved dynamic kernel principal component analysis [J]. CIESC Journal, 2019, 70(2): 716-722. |
[12] | Zhiqiang GENG, Shaoxing JING, Ju BAI, Zhongkai WANG, Qunxiong ZHU, Yongming HAN. Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries [J]. CIESC Journal, 2019, 70(2): 572-580. |
[13] | Bingbin GU, Weili XIONG. Fault diagnosis based on PCA method with multi-block information extraction [J]. CIESC Journal, 2019, 70(2): 736-749. |
[14] | Zhizhen WANG, Zhiyun ZOU. Nonlinear predictive control strategies of pH neutralization process based on neural networks [J]. CIESC Journal, 2019, 70(2): 678-686. |
[15] | GAO Xuejin, HUANG Mengdan, QI Yongsheng, WANG Pu. Batch process monitoring using multiphase AR-PCA optimized with PDPSO [J]. CIESC Journal, 2018, 69(9): 3914-3923. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||