CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 661-669.DOI: 10.11949/j.issn.0438-1157.20181007
• Process system engineering • Previous Articles Next Articles
Weiqing HUANG1,2(),Pingru XU1,Yu QIAN2
Received:
2018-09-10
Revised:
2018-10-16
Online:
2019-02-05
Published:
2019-02-05
Contact:
Weiqing HUANG
通讯作者:
黄卫清
作者简介:
黄卫清(1983—),男,博士,副教授,<email>huangwq@dgut.edu.cn</email>
基金资助:
CLC Number:
Weiqing HUANG, Pingru XU, Yu QIAN. Atmospheric environment risk analysis of oil consuming by vehicles based on FTA method: taking Hangzhou as a case study[J]. CIESC Journal, 2019, 70(2): 661-669.
黄卫清, 徐平如, 钱宇. 基于故障树方法的机动车燃油大气环境风险评价:以杭州市为例[J]. 化工学报, 2019, 70(2): 661-669.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181007
Item | Energy consumed×10?4/ (t standard coal) | ||||
---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | |
total energy | 387043.00 | 402138.00 | 416913 | 425806 | 429905.1 |
coal | 271704.19 | 275464.53 | 280999.36 | 279328.74 | 273849.49 |
oil | 65023.22 | 68363.46 | 71292.12 | 74090.24 | 78672.62 |
natural gas | 17803.98 | 19302.62 | 22096.39 | 24270.94 | 25364.40 |
water, nuclear and wind energy | 32511.61 | 39007.39 | 42525.13 | 48116.08 | 52018.51 |
transportation related energy | 28535.50 | 31524.71 | 34819.02 | 36336.43 | 38317.66 |
Table 1 Energy consumed situation in China during 2011—2015
Item | Energy consumed×10?4/ (t standard coal) | ||||
---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | |
total energy | 387043.00 | 402138.00 | 416913 | 425806 | 429905.1 |
coal | 271704.19 | 275464.53 | 280999.36 | 279328.74 | 273849.49 |
oil | 65023.22 | 68363.46 | 71292.12 | 74090.24 | 78672.62 |
natural gas | 17803.98 | 19302.62 | 22096.39 | 24270.94 | 25364.40 |
water, nuclear and wind energy | 32511.61 | 39007.39 | 42525.13 | 48116.08 | 52018.51 |
transportation related energy | 28535.50 | 31524.71 | 34819.02 | 36336.43 | 38317.66 |
Item | Oil consumed/t | ||||
---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | |
diesel oil | 186630 | 171080 | 162127 | 157836 | 148219 |
gasoline | 51827 | 55293 | 49705 | 42974 | 45907 |
fuel oil | 67662 | 51759 | 44097 | 32541 | 26072 |
other petroleum products | 224673 | 244203 | 134188 | 71599 | 24964 |
Table 2 Oil consumed situation in Hangzhou during 2011—2015
Item | Oil consumed/t | ||||
---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | |
diesel oil | 186630 | 171080 | 162127 | 157836 | 148219 |
gasoline | 51827 | 55293 | 49705 | 42974 | 45907 |
fuel oil | 67662 | 51759 | 44097 | 32541 | 26072 |
other petroleum products | 224673 | 244203 | 134188 | 71599 | 24964 |
Item | 2013 | 2014 | 2015 |
---|---|---|---|
annual average concentration of NO2/(μg·m–3) | 53 | 50 | 49 |
annual average concentration of SO2/(μg·m–3) | 28 | 21 | 16 |
annual average concentration of PM2.5/(μg·m–3) | 70 | 64.4 | 57 |
days of good air quality /d | 217 | 228 | 242 |
rate of good air quality /% | 60 | 62.5 | 66.3 |
Table 3 Atmospheric pollution in Hangzhou during
Item | 2013 | 2014 | 2015 |
---|---|---|---|
annual average concentration of NO2/(μg·m–3) | 53 | 50 | 49 |
annual average concentration of SO2/(μg·m–3) | 28 | 21 | 16 |
annual average concentration of PM2.5/(μg·m–3) | 70 | 64.4 | 57 |
days of good air quality /d | 217 | 228 | 242 |
rate of good air quality /% | 60 | 62.5 | 66.3 |
Risk factors | Probability average values | Structure importance degree coefficients | Probability importance degree coefficients | Critical importance degree coefficients |
---|---|---|---|---|
excess emission of vehicle exhausts (T) | 0.3888 | — | — | — |
high pollution vehicle’s using (E 1) | — | — | — | — |
improper using (X 1) | 0.5 | 0.5 | 0.175 | 0.225 |
supervising defect (X 2) | 0.25 | 0.5 | 0.350 | 0.225 |
vehicle using with design defect (E 2) | — | — | — | — |
ignition device defect (X 3) | 0.25 | 0.25 | 0.155 | 0.0997 |
lack of purification device (X 4) | 0.25 | 0.25 | 0.155 | 0.0997 |
non-strict supervision (X 5) | 0.25 | 0.25 | 0.155 | 0.0997 |
bad traffic (E 3) | — | — | — | — |
severe traffic jam (X 6) | 0.45 | 0.5 | 0.502 | 0.581 |
excess vehicles (X 7) | 0.6 | 0.5 | 0.377 | 0.581 |
unqualified oil using (E 4) | — | — | — | — |
production of inferior oil (X 8) | 0.3 | 0.25 | 0.157 | 0.121 |
interests driving (X 9) | 0.3 | 0.25 | 0.157 | 0.121 |
absence of supervision on oil quality (X 10) | 0.3 | 0.25 | 0.157 | 0.121 |
Table 5 Risk factors and the qualitative/quantitative analysis results
Risk factors | Probability average values | Structure importance degree coefficients | Probability importance degree coefficients | Critical importance degree coefficients |
---|---|---|---|---|
excess emission of vehicle exhausts (T) | 0.3888 | — | — | — |
high pollution vehicle’s using (E 1) | — | — | — | — |
improper using (X 1) | 0.5 | 0.5 | 0.175 | 0.225 |
supervising defect (X 2) | 0.25 | 0.5 | 0.350 | 0.225 |
vehicle using with design defect (E 2) | — | — | — | — |
ignition device defect (X 3) | 0.25 | 0.25 | 0.155 | 0.0997 |
lack of purification device (X 4) | 0.25 | 0.25 | 0.155 | 0.0997 |
non-strict supervision (X 5) | 0.25 | 0.25 | 0.155 | 0.0997 |
bad traffic (E 3) | — | — | — | — |
severe traffic jam (X 6) | 0.45 | 0.5 | 0.502 | 0.581 |
excess vehicles (X 7) | 0.6 | 0.5 | 0.377 | 0.581 |
unqualified oil using (E 4) | — | — | — | — |
production of inferior oil (X 8) | 0.3 | 0.25 | 0.157 | 0.121 |
interests driving (X 9) | 0.3 | 0.25 | 0.157 | 0.121 |
absence of supervision on oil quality (X 10) | 0.3 | 0.25 | 0.157 | 0.121 |
Risk factors | Probability | |||
---|---|---|---|---|
Expert 1 | Expert 2 | Expert 3 | Average | |
excess emission of vehicle exhausts (T) | — | — | — | — |
high pollution vehicle’s using (E 1) | — | — | — | — |
improper using (X 1) | 0.45 | 0.5 | 0.55 | 0.5 |
supervising defect (X 2) | 0.2 | 0.2 | 0.35 | 0.25 |
vehicle using with design defect (E 2) | — | — | — | — |
ignition device defect (X 3) | 0.2 | 0.3 | 0.25 | 0.25 |
lack of purification device (X 4) | 0.2 | 0.25 | 0.3 | 0.25 |
non-strict supervision (X 5) | 0.25 | 0.2 | 0.3 | 0.25 |
bad traffic (E 3) | — | — | — | — |
severe traffic jam (X 6) | 0.45 | 0.5 | 0.4 | 0.45 |
excess vehicles (X 7) | 0.65 | 0.6 | 0.55 | 0.6 |
unqualified oil using (E 4) | — | — | — | — |
production of inferior oil (X 8) | 0.25 | 0.4 | 0.3 | 0.3 |
interests driving (X 9) | 0.4 | 0.25 | 0.25 | 0.3 |
absence of supervision on oil quality (X 10) | 0.35 | 0.3 | 0.25 | 0.3 |
Table 4 Risk factors and probability values in fault tree
Risk factors | Probability | |||
---|---|---|---|---|
Expert 1 | Expert 2 | Expert 3 | Average | |
excess emission of vehicle exhausts (T) | — | — | — | — |
high pollution vehicle’s using (E 1) | — | — | — | — |
improper using (X 1) | 0.45 | 0.5 | 0.55 | 0.5 |
supervising defect (X 2) | 0.2 | 0.2 | 0.35 | 0.25 |
vehicle using with design defect (E 2) | — | — | — | — |
ignition device defect (X 3) | 0.2 | 0.3 | 0.25 | 0.25 |
lack of purification device (X 4) | 0.2 | 0.25 | 0.3 | 0.25 |
non-strict supervision (X 5) | 0.25 | 0.2 | 0.3 | 0.25 |
bad traffic (E 3) | — | — | — | — |
severe traffic jam (X 6) | 0.45 | 0.5 | 0.4 | 0.45 |
excess vehicles (X 7) | 0.65 | 0.6 | 0.55 | 0.6 |
unqualified oil using (E 4) | — | — | — | — |
production of inferior oil (X 8) | 0.25 | 0.4 | 0.3 | 0.3 |
interests driving (X 9) | 0.4 | 0.25 | 0.25 | 0.3 |
absence of supervision on oil quality (X 10) | 0.35 | 0.3 | 0.25 | 0.3 |
1 | Zhang R , Jing J , Tao J , et al . Chemical characterizations and source apportionment of PM2.5 in Beijing: seasonal perspective[J]. Atmos. Chem. Phys., 2013, 13: 7053-7074. |
2 | Gao M , Guttikunda S K , Carmichael G R , et al . Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area[J]. Sci. Total Environ., 2015, 511: 553-561. |
3 | Gao J , Woodward A , Vardoulakis S , et al . Haze, public health and mitigation measures in China: a review of the current evidence for further policy response[J]. Sci. Total Environ., 2017, 578: 148-157. |
4 | Zhang Q , Quan J , Tie X , et al . Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China[J]. Sci. Total Environ., 2015, 502: 578-584. |
5 | Huang G . PM2.5 opened a door to public participation addressing environmental challenges in China[J]. Environ. Pollut., 2015, 197: 313-315. |
6 | Li M , Zhang L . Haze in China: current and future challenges [J]. Environ. Pollut., 2014, 189: 85-86. |
7 | Zhang H , Wang S , Hao J , et al . Air pollution and control action in Beijing[J]. J. Clean. Prod., 2016, 112: 1519-1527. |
8 | Fu H , Chen J. Formation , features and controlling strategies of severe haze-fog pollutions in China [J]. Sci. Total Environ., 2017, 578: 121-138. |
9 | Liu G , Yang Z , Chen B , et al . Prevention and control policy analysis for energy-related regional pollution management in China[J]. Appl. Energy, 2016, 166: 292-300. |
10 | 黄卫清, 李秀喜, 钱宇 . 含滞后及不确定参数动态过程系统的定量优化方法与应用[J]. 化工学报, 2009, 60(1): 83-89. |
Huang W Q , Li X X , Qian Y . Quantitative optimization method and application of dynamic process systems with time delay and parametric uncertainty[J]. CIESC Journal, 2009, 60(1): 83-89. | |
11 | Huang W Q , Fan H B , Qian Y , et al . Assessment and computation of the delay tolerability for batch reactors under uncertainty[J]. Chem. Eng. Res. Des., 2017, 124: 78-84. |
12 | Huang W Q , Qian Y , Shao Y Y , et al . Delay sensitivity analysis for typical reactor systems with flexibility consideration[J]. 2014, 53: 14721-14734. |
13 | Zhang Y , Cao F . Is it time to tackle PM2.5 air pollutions in China from biomass-burning emissions?[J]. Environ. Pollut., 2015, 202: 217-219. |
14 | Zhou S , Yang L , Gao R , et al . A comparison study of carbonaceous aerosols in a typical North China Plain urban atmosphere: seasonal variability, sources and implications to haze formation[J]. Atmos. Environ., 2017, 149: 95-103. |
15 | Yang Y , Liu X , Qu Y , et al . Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013[J]. Atmos. Res., 2015, 5: 192-203. |
16 | Tie X , Zhang Q , He H , et al . A budget analysis of the formation of haze in Beijing[J]. Atmos. Environ., 2015, 100: 25-36. |
17 | Huang R , Zhang Y , Bozzeti C , et al . High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514: 218-222. |
18 | Zhang R , Sun X , Shi A , et al . Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China[J]. Atmos. Environ., 2018, 177: 275-282. |
19 | Huang W Q , Fan H B , Qiu Y F , et al . Application of fault tree approach for the causation mechanism of urban haze in Beijing—considering the risk events related with exhausts of coal combustion[J]. Sci. Total Environ., 2016, 544: 1128-1135. |
20 | Huang W Q , Fan H B , Qiu Y F , et al . Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach[J]. Chemosphere, 2016, 151: 9-16. |
21 | Escher B I , Fenner K . Recent advances in environmental risk assessment of transformation products[J]. Environ. Sci. Technol., 2011, 45: 3835-3847. |
22 | Sexton K . Cumulative health risk assessment: finding new ideas and escaping from the old ones[J]. Hum. Ecol. Risk. Assess., 2015, 21: 934-951. |
23 | Tsang M P , Bates M E , Madison M , et al . Benefits and risks of emerging technologies: integrating life cycle assessment and decision analysis to assess lumber treatment alternatives[J]. Environ. Sci. Technol., 2014, 48: 11543-11550. |
24 | Bedford T , Cooke R . Probabilistic Risk Analysis: Foundations and Methods[M]. Cambridge: Cambridge University Press, 2001. |
25 | Placca L , Kouta R . Fault tree analysis for PEM fuel cell degradation process modeling[J]. Int.J. Hydrogen. Energ., 2011, 36: 393-405. |
26 | Cheng S , Li Z , Mang H , et al . Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal[J]. Appl. Energy, 2014, 113: 1372-1381. |
27 | Lindhe A , Norberg T , Rosen L . Approximate dynamic fault tree calculations for modelling water supply risks[J]. Reliab. Eng. Syst. Safe., 2012, 106: 61-71. |
28 | Abdul R F , Varuttamaseni A , Kintner-Meyer M , et al . Application of fault tree analysis for customer reliability assessment of a distribution power system[J]. Reliab. Eng. Syst. Safe., 2013, 111: 76-85. |
29 | 唐桂忠, 张广明, 巩建鸣 . 基于模糊粗糙集和事例推理的凝汽器真空故障诊断[J].化工学报, 2011, 62(8): 2227-2231. |
Tang G Z , Zhang G M , Gong J M . A new method of fault diagnosis of condenser vacuum based on fuzzy rough set and case-based reasoning[J]. CIESC Journal, 2011, 62(8): 2227-2231. | |
30 | 姜周曙, 翁翔彬, 王剑, 等 . 反渗透海水淡化系统“脱盐率与产水量下降故障树”分析[J].化工学报, 2014, 65(6): 2172-2178. |
Jiang Z S , Weng X B , Wang J , et al . Fault tree analysis on decreases of desalination rate and permeate flow rate of seawater reverse osmosis desalination system[J]. CIESC Journal, 2014, 65(6): 2172-2178. | |
31 | 黄卫清, 徐平如, 钱宇 . 基于事故树方法的城市灰霾的致因机理分析:以天津市为例[J]. 化工学报, 2018, 69(3): 982-991. |
Huang W Q , Xu P R , Qian Y . Causation mechanism analysis of urban haze based on FTA method: taking Tianjin as a case study[J]. CIESC Journal, 2018, 69(3): 982-991. | |
32 | 中国统计局 . 2016中国统计年鉴[M]. 北京:中国统计出版社, 2017. |
National Bureau of Statistics of China . 2016 China Statistics Yearbook[M]. Beijing: China Statistics Press, 2017. | |
33 | 杭州市统计局 . 2016 杭州统计年鉴[M]. 北京: 中国统计出版社, 2017. |
Hangzhou Municipal Bureau of Statistics . 2016 Hangzhou Statistical Yearbook[M]. Beijing: China Statistics Press, China, 2017. | |
34 | 中国环保部 . 2014年中国机动车污染防治年报 [M]. 北京:中国统计出版社, 2015. |
Ministry of Environmental Protection of the People’s Republic of China . 2014 China Vehicle Emission Control Annual Report[M]. Beijing: China Statistics Press. China, 2015. | |
35 | 中国国务院 . 大气污染防治计划[EB/OL]. [2013-09-10]. . |
China's State Council . Action Plan on Prevention and Control of Air Pollution[EB/OL]. [2013-09-10]. . | |
36 | 杭州市人民政府 . 杭州市2014年大气污染实施计划[EB/OL]. . |
Hangzhou Municipal Government . 2014 Action Plan on Prevention and Control of Air Pollution in Hangzhou[EB/OL]. . |
[1] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[2] | Chongda DUAN, Xiaowei YAO, Jiahua ZHU, Jing SUN, Nan HU, Guangyue LI. Effects of environmental factors on calcium carbonate precipitation induced by Klebsiella aerogenes [J]. CIESC Journal, 2023, 74(8): 3543-3553. |
[3] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[4] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[5] | Tanjie ZHA, Han YANG, Hejie QIN, Xiaohong GUAN. The construction of biomimetic materials and their research progress in the field of aquatic environmental chemistry [J]. CIESC Journal, 2023, 74(2): 585-598. |
[6] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
[7] | Wenting DUAN, Siyue REN, Xiao FENG, Yufei WANG. Distillation column pressure optimization integrated with the heat exchanger network [J]. CIESC Journal, 2022, 73(5): 2052-2059. |
[8] | Shipei XU, Chao WANG, Qingyuan LI, Bingkang ZHANG, Shiwei XU, Xueqin ZHANG, Shiying WANG, Mengxiao CONG. Study on influence of CaO during thermal desorption products of oil-based drilling cuttings [J]. CIESC Journal, 2022, 73(4): 1724-1731. |
[9] | Qi WANG, Kuo FANG, Conghui HE, Kaijun WANG. Recent development and future challenges of flow-electrode capacitive deionization [J]. CIESC Journal, 2022, 73(3): 975-989. |
[10] | Wei SONG, Wanjia LI, Shurong YU, Rongrong MA. Effect of thermal mechanical coupling on fretting wear behavior of TC4 alloy [J]. CIESC Journal, 2022, 73(3): 1324-1334. |
[11] | Maolin YE, Fenghua TAN, Yuping LI, Yuhe LIAO, Chenguang WANG, Longlong MA. Life cycle environmental impact assessment of mixed alcohol via gasification of agricultural and forestry residues and catalytic synthesis [J]. CIESC Journal, 2022, 73(3): 1369-1378. |
[12] | Dehong WANG, Lin SUN, Xionglin LUO. Full-cycle slow-lift limited optimization analysis of multi-effect distillation heat transfer temperature difference in seawater desalination system [J]. CIESC Journal, 2022, 73(12): 5469-5482. |
[13] | LIANG Kunfeng, WANG Moran, GAO Meijie, LYU Zhenwei, XU Hongyu, DONG Bin, GAO Fengling. Thermodynamic analysis of performance of integrated thermal management system for pure electric vehicle [J]. CIESC Journal, 2021, 72(S1): 494-502. |
[14] | ZHANG Yijie, LIU Xing, CHEN Zhenwu, ZHANG Xiaochun, ZHOU Yong, QIU Jiandong, GU Wenbo, MA Tao. Sizing method and operating characteristics of distributed photovoltaic battery system [J]. CIESC Journal, 2021, 72(S1): 503-511. |
[15] | MA Qiuming, NIE Lei, PAN Quanwen, SHAN He, CAO Weiliang, WANG Qiang, WANG Ruzhu. Heat exchange performance of a battery chiller for electric vehicles [J]. CIESC Journal, 2021, 72(S1): 170-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||