CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 670-677.DOI: 10.11949/j.issn.0438-1157.20181052
• Process system engineering • Previous Articles Next Articles
Song HU1(),Jinlong LI2,Mujin LI1,Weisheng YANG1()
Received:
2018-09-19
Revised:
2018-10-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Weisheng YANG
通讯作者:
杨卫胜
作者简介:
<named-content content-type="corresp-name">胡松</named-content>(1983—),男,博士,高工,<email>husong.sshy@sinopec.com</email>|杨卫胜(1972—),男,教授,<email>yangws.sshy@sinopec.com</email>
基金资助:
CLC Number:
Song HU, Jinlong LI, Mujin LI, Weisheng YANG. Extractive refining process for production of propylene oxide with high purification[J]. CIESC Journal, 2019, 70(2): 670-677.
胡松, 李进龙, 李木金, 杨卫胜. 萃取精馏生产高纯度环氧丙烷的工艺研究[J]. 化工学报, 2019, 70(2): 670-677.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181052
Comp. | Relative volatility | ||
---|---|---|---|
None Sol. | nC8 | nC7 | |
water | 0.9 | 7.9 | 11.0 |
acetaldehyde | 1.5 | 4.5 | 2.7 |
methanol | 1.0 | 5.5 | 2.9 |
methyl formate | 1.1 | 4.0 | 2.5 |
Table 1 Effect of extractant on relative volatility of water,acetaldehyde, methanol, methyl acetate to PO (101.325 kPa)
Comp. | Relative volatility | ||
---|---|---|---|
None Sol. | nC8 | nC7 | |
water | 0.9 | 7.9 | 11.0 |
acetaldehyde | 1.5 | 4.5 | 2.7 |
methanol | 1.0 | 5.5 | 2.9 |
methyl formate | 1.1 | 4.0 | 2.5 |
Comp. | Waste water | nC7 | nC8 | |||
---|---|---|---|---|---|---|
Organic phase | Aqueous phase | Organic phase | Aqueous phase | |||
water | 40.0 | 1.14 | 59.06 | 1.20 | 58.25 | |
acetaldehyde | 5.0 | 3.45 | 4.74 | 3.32 | 4.82 | |
methanol | 5.0 | 0.83 | 6.84 | 0.86 | 6.73 | |
methyl formate | 10.0 | 11.28 | 5.98 | 11.77 | 5.67 | |
PO | 36.0 | 38.54 | 23.18 | 37.38 | 24.28 | |
nC7/nC8 | 4.0 | 44.77 | 0.21 | 45.47 | 0.25 |
Table 2 LLE for nC7/nC8-water-PO mixture/%(mass)
Comp. | Waste water | nC7 | nC8 | |||
---|---|---|---|---|---|---|
Organic phase | Aqueous phase | Organic phase | Aqueous phase | |||
water | 40.0 | 1.14 | 59.06 | 1.20 | 58.25 | |
acetaldehyde | 5.0 | 3.45 | 4.74 | 3.32 | 4.82 | |
methanol | 5.0 | 0.83 | 6.84 | 0.86 | 6.73 | |
methyl formate | 10.0 | 11.28 | 5.98 | 11.77 | 5.67 | |
PO | 36.0 | 38.54 | 23.18 | 37.38 | 24.28 | |
nC7/nC8 | 4.0 | 44.77 | 0.21 | 45.47 | 0.25 |
PG/%(mass) | Relative volatility of listed components to PO | ||
---|---|---|---|
Methanol | Water | Acetaldehyde | |
0 (without extractant) | 0.7 | 0.9 | 1.5 |
0 | 2.9 | 11 | 2.7 |
13 | 1.2 | 1.2 | 1.3 |
36 | 0.5 | 0.4 | 0.9 |
Table 3 Effect of PG on extraction process[16]
PG/%(mass) | Relative volatility of listed components to PO | ||
---|---|---|---|
Methanol | Water | Acetaldehyde | |
0 (without extractant) | 0.7 | 0.9 | 1.5 |
0 | 2.9 | 11 | 2.7 |
13 | 1.2 | 1.2 | 1.3 |
36 | 0.5 | 0.4 | 0.9 |
Unit block | Parameter | Value | Unit |
---|---|---|---|
extractive distillation column (EDC) | theoretical stage | 60 | — |
operating pressure | 200 | kPa | |
feed stage of crude PO | 31 | — | |
temperature of solvent | 50 | ℃ | |
solvent ratio | 4.0 | — | |
flow rate of water | 55.0 | kg/h | |
PO production column (PPC) | theoretical stage | 30 | — |
operating pressure | 170 | kPa | |
water wash column (WWC) | theoretical stage | 10 | — |
operating temperature | 50 | ℃ | |
flow rate of solvent | 120 | kg/h | |
PG separator | temperature | 40 | ℃ |
Table 4 Optimization parameters for flowsheet simulation
Unit block | Parameter | Value | Unit |
---|---|---|---|
extractive distillation column (EDC) | theoretical stage | 60 | — |
operating pressure | 200 | kPa | |
feed stage of crude PO | 31 | — | |
temperature of solvent | 50 | ℃ | |
solvent ratio | 4.0 | — | |
flow rate of water | 55.0 | kg/h | |
PO production column (PPC) | theoretical stage | 30 | — |
operating pressure | 170 | kPa | |
water wash column (WWC) | theoretical stage | 10 | — |
operating temperature | 50 | ℃ | |
flow rate of solvent | 120 | kg/h | |
PG separator | temperature | 40 | ℃ |
Component | Waste water | PO production |
---|---|---|
water | 0.8398 | 0 |
acetaldehyde | 0.0693 | <5×10?6 |
methanol | 0.0694 | <5×10?6 |
methyl formate | 0.0069 | <2 ×10?6 |
PO | 0.0135 | >0.9999 |
nC8 | 0.0008 | <1 ×10?6 |
PG | 0.0003 | 0 |
Table 5 Composition of PO product and waste water of water wash column(mass fraction)
Component | Waste water | PO production |
---|---|---|
water | 0.8398 | 0 |
acetaldehyde | 0.0693 | <5×10?6 |
methanol | 0.0694 | <5×10?6 |
methyl formate | 0.0069 | <2 ×10?6 |
PO | 0.0135 | >0.9999 |
nC8 | 0.0008 | <1 ×10?6 |
PG | 0.0003 | 0 |
Item | This work | Traditional process |
---|---|---|
PG content in recycle solvent | 46×10?6 | 2%(mass) |
solvent ratio | 4.0 | 6.0 |
energy consumption/(MW/(t PO)) | 0.721 | 0.775 |
solvent loss/(kg/h) | 2.4 | 823.6 |
PO product yield/% | 99.88 | 99.78 |
Table 6 Economical analysis
Item | This work | Traditional process |
---|---|---|
PG content in recycle solvent | 46×10?6 | 2%(mass) |
solvent ratio | 4.0 | 6.0 |
energy consumption/(MW/(t PO)) | 0.721 | 0.775 |
solvent loss/(kg/h) | 2.4 | 823.6 |
PO product yield/% | 99.88 | 99.78 |
1 | 程能林. 溶剂手册[M]. 4版. 北京: 化学工业出版社, 2008: 547. |
ChengN L. Solvents Handbook[M]. 4th ed. Beijing: Chemical Industry Press, 2008: 547. | |
2 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业用环氧丙烷: GB/T 14491—2015[S]. 北京: 中国标准出版社, 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Propylene oxide for industrial use: GB/T 14491—2015[S]. Beijing: Standards Press of China, 2016. | |
3 | SchmidtJ P. Separation of propylene oxide from other hydrocarbons: US3843488[P]. 1967-09-07. |
4 | ThomasS T. Lower alkylene oxide purification: US5133839[P]. 1991-07-25. |
5 | MeyerR A, SmithW A, MuellerM A, et al. Plural stage purification of propylene oxide: US5262017[P]. 1993-04-19. |
6 | WilliamK C III, SheuY H E, PottratzD G. Staged purification of contaminated propylene oxide: US5354430[P]. 1993-10-26. |
7 | TaylorM E. Plural stage drying and purification of propylene oxide: US5354431[P]. 1993-09-23. |
8 | OkuN, NakayamaT, ShinoharaK. Method of purifying propylene oxide: US7285187[P]. 2004-08-13. |
9 | NakayamaT, TsujiJ, OkuN, et al. Method of purifying propylene oxide: US8093412[P]. 2005-06-21. |
10 | SawyerG A. Purification of propylene oxide: US20120077996[P]. 2010-09-28. |
11 | 王惠媛, 许松林. 常压精馏分离环氧丙烷-甲醇的工艺模拟[J]. 精细石油化工, 2005, (5): 45-47. |
WangH Y, XuS L. Atmospheric distillation process simulation for separation of propylene oxide and methanol[J]. Speciality Petrochemicals, 2005, (5): 45-47. | |
12 | 曾琦斐. 萃取精馏分离环氧丙烷与甲醇混合物的模拟与优化[J]. 现代化工, 2012, 32(5): 114-116. |
ZengQ F. Simulation and optimization of extractive distillation separation of propylene oxide and methanol[J]. Modern Chemical Industry, 2012, 32(5): 114-116. | |
13 | 辜乌根, 胡松, 李木金, 等. 萃取精馏法精制1,2-环氧丁烷的研究[J]. 石油化工, 2016, 45(6): 834-840. |
GuW G, HuS, LiM J, et al. Purification of 1,2-butylene oxide by extractive distillation[J]. Petrochemical Technology, 2016, 45(6): 834-840. | |
14 | 胡松, 杨卫胜. 萃取精馏分离环氧丙烷-水-甲醇混合物的模拟[J]. 石油化工, 2013, 42(7): 775-779. |
HuS, YangW S. Simulation of separating propylene oxide-water-methanol mixture by extractive distillation[J]. Petrochemical Technology, 2013, 42(7): 775-779. | |
15 | BaerH, BergamoM, ForlinA, et al. Ullmann’s Encyclopedia of Industrial Chemistry: Propylene Oxide[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. |
16 | OkuN, NakayamaT, ShinoharaK. Method of purifying propylene oxide: WO2003068761A1[P]. 2003-02-07. |
17 | WickertJ N, TamplinW S, ShankR L. Phase equilibria in the system propylene oxide-water[J]. Chemical Engineering Progress, 1952, 48(2): 92-96. |
18 | MuehlebruchM, FigurskiG. The vapor-liquid equilibrium in the binary systems acetaldehyde-propylene oxide, acetaldehyde-methyl formate and propylene oxide-propanol-2 at 101.325kPa[J]. Z. Phys. Chem. (Leipzig), 1989, 270(2): 305-314. |
19 | HsiehC M, SandlerS I, LinS T. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297 (1): 90-97. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[14] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[15] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||