CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 2823-2834.DOI: 10.11949/0438-1157.20190287
Previous Articles Next Articles
Jingying XU(),Jiankun ZHUO,Qiang YAO()
Received:
2019-03-27
Revised:
2019-04-20
Online:
2019-08-05
Published:
2019-08-05
Contact:
Qiang YAO
通讯作者:
姚强
作者简介:
徐静颖(1991—),女,博士研究生,基金资助:
CLC Number:
Jingying XU, Jiankun ZHUO, Qiang YAO. Research progress on formation, emission characteristics and sampling methods of organic compounds from coal combustion[J]. CIESC Journal, 2019, 70(8): 2823-2834.
徐静颖, 卓建坤, 姚强. 燃煤有机污染物生成排放特性与采样方法研究进展[J]. 化工学报, 2019, 70(8): 2823-2834.
Add to citation manager EndNote|Ris|BibTeX
种类 | 物理特性 | 典型组分 |
---|---|---|
易挥发性有机物 | 一般熔点低于室温,沸点0~50℃ | 二氯甲烷、氯乙烯、戊烷 |
挥发性有机物 | 常温下呈气态,一般沸点在50~250℃ | 甲苯、芳烃、烯烃、醛酮类 |
半挥发性有机物 | 一般熔点低于室温,沸点170~380℃ | 多环芳烃、多氯联苯类 |
颗粒有机物 | 沸点一般在380℃以上 | 脂肪酸类、正构烷烃、多环芳烃等 |
Table 1 Classification and characteristics of organic compounds
种类 | 物理特性 | 典型组分 |
---|---|---|
易挥发性有机物 | 一般熔点低于室温,沸点0~50℃ | 二氯甲烷、氯乙烯、戊烷 |
挥发性有机物 | 常温下呈气态,一般沸点在50~250℃ | 甲苯、芳烃、烯烃、醛酮类 |
半挥发性有机物 | 一般熔点低于室温,沸点170~380℃ | 多环芳烃、多氯联苯类 |
颗粒有机物 | 沸点一般在380℃以上 | 脂肪酸类、正构烷烃、多环芳烃等 |
浸取时间/h | 脂环烃 | 苯系物 | 直链烃 | PAHs | ||||
---|---|---|---|---|---|---|---|---|
种类 | 含量/% | 种类 | 含量/% | 种类 | 含量/% | 种类 | 含量/% | |
17 | 5 | 14.68 | 8 | 28.54 | 10 | 11.53 | 23 | 45.24 |
41 | 4 | 9.91 | 8 | 27.73 | 7 | 9.83 | 29 | 52.53 |
65 | 5 | 18.49 | 9 | 38.23 | 12 | 10.22 | 25 | 33.05 |
88 | 3 | 4.95 | 8 | 46.01 | 10 | 10.75 | 28 | 38.20 |
Table 2 Organic compounds in CH2Cl2
浸取时间/h | 脂环烃 | 苯系物 | 直链烃 | PAHs | ||||
---|---|---|---|---|---|---|---|---|
种类 | 含量/% | 种类 | 含量/% | 种类 | 含量/% | 种类 | 含量/% | |
17 | 5 | 14.68 | 8 | 28.54 | 10 | 11.53 | 23 | 45.24 |
41 | 4 | 9.91 | 8 | 27.73 | 7 | 9.83 | 29 | 52.53 |
65 | 5 | 18.49 | 9 | 38.23 | 12 | 10.22 | 25 | 33.05 |
88 | 3 | 4.95 | 8 | 46.01 | 10 | 10.75 | 28 | 38.20 |
物种 | 淮南烟煤 | 龙口烟煤 | 神华烟煤 | 兖州烟煤 | 淮北烟煤 | 大同烟煤 | 资兴烟煤 | 太原烟煤 | 枣庄烟煤 | 羊城 无烟煤 | 永兴 无烟煤 |
---|---|---|---|---|---|---|---|---|---|---|---|
苯 | 1.46 | 8.29 | 6.63 | 1.79 | 8.60 | 5.03 | 14.21 | 5.08 | 2.08 | 12.22 | 6.22 |
2,6-二甲基-十氢化菲 | 1.02 | 2.64 | 21.11 | 23.70 | 12.55 | 18.57 | 0.02 | 13.42 | 4.06 | 2.60 | 3.37 |
异构十六烷 | 2.47 | 4.74 | 1.31 | 5.70 | 3.20 | 2.23 | 4.88 | 5.88 | 4.72 | 4.97 | 3.96 |
正十六烷 | 13.04 | 10.92 | 4.56 | 11.79 | 10.55 | 7.32 | 16.44 | 21.59 | 21.80 | 13.44 | 14.14 |
异构十七烷 | 1.14 | 0.97 | 0.53 | 1.14 | 1.32 | 0.79 | 1.34 | 1.94 | 1.95 | 1.62 | 1.75 |
正十七烷 | 9.42 | 9.87 | 4.35 | 8.28 | 10.17 | 6.92 | 11.82 | 14.61 | 14.79 | 12.63 | 12.34 |
正十八烷 | 5.08 | 4.41 | 1.61 | 3.70 | 4.80 | 2.27 | 4.03 | 6.50 | 6.02 | 5.63 | 5.87 |
Table 3 Percentage of 7 organic compounds in total VOCs in each coal/%
物种 | 淮南烟煤 | 龙口烟煤 | 神华烟煤 | 兖州烟煤 | 淮北烟煤 | 大同烟煤 | 资兴烟煤 | 太原烟煤 | 枣庄烟煤 | 羊城 无烟煤 | 永兴 无烟煤 |
---|---|---|---|---|---|---|---|---|---|---|---|
苯 | 1.46 | 8.29 | 6.63 | 1.79 | 8.60 | 5.03 | 14.21 | 5.08 | 2.08 | 12.22 | 6.22 |
2,6-二甲基-十氢化菲 | 1.02 | 2.64 | 21.11 | 23.70 | 12.55 | 18.57 | 0.02 | 13.42 | 4.06 | 2.60 | 3.37 |
异构十六烷 | 2.47 | 4.74 | 1.31 | 5.70 | 3.20 | 2.23 | 4.88 | 5.88 | 4.72 | 4.97 | 3.96 |
正十六烷 | 13.04 | 10.92 | 4.56 | 11.79 | 10.55 | 7.32 | 16.44 | 21.59 | 21.80 | 13.44 | 14.14 |
异构十七烷 | 1.14 | 0.97 | 0.53 | 1.14 | 1.32 | 0.79 | 1.34 | 1.94 | 1.95 | 1.62 | 1.75 |
正十七烷 | 9.42 | 9.87 | 4.35 | 8.28 | 10.17 | 6.92 | 11.82 | 14.61 | 14.79 | 12.63 | 12.34 |
正十八烷 | 5.08 | 4.41 | 1.61 | 3.70 | 4.80 | 2.27 | 4.03 | 6.50 | 6.02 | 5.63 | 5.87 |
采样方法 | 选择性 | 成本 | 应用范围 |
---|---|---|---|
吸附管 | 有 | 高 | C3~C20 |
采样罐 | 无 | 高 | C1~C10,吸附作用较小 |
气袋 | 无 | 低 | 沸点低的有机物,吸附作用较大 |
Table 4 Conventional VOCs sampling methods
采样方法 | 选择性 | 成本 | 应用范围 |
---|---|---|---|
吸附管 | 有 | 高 | C3~C20 |
采样罐 | 无 | 高 | C1~C10,吸附作用较小 |
气袋 | 无 | 低 | 沸点低的有机物,吸附作用较大 |
1 | 中华人民共和国国家统计局. 中国统计年鉴-2018[M]. 北京: 中国统计出版社, 2018. |
National Bureau of Statistics of the People s Republic of China. China Statistical Yearbook-2018[M]. Beijing: China Statistics Press, 2018. | |
2 | 郑楚光, 徐明厚, 张军营. 煤燃烧痕量元素的排放与控制[M]. 武汉: 湖北科学技术出版社, 2002. |
ZhengC G, XuM H, ZhangJ Y. Emission and Control of Trace Elements in Coal Combustion[M]. Wuhan: Hubei Science and Technology Press, 2002. | |
3 | ZhaoY, WangS, DuanL, et al. Primary air pollutant emissions of coal-fired power plants in China: current status and future prediction[J]. Atmospheric Environment, 2008, 42(36): 8442-8452. |
4 | MeijR, Te WinkelH. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmospheric Environment, 2007, 41(40): 9262-9272. |
5 | YiH, HaoJ, DuanL, et al. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008, 87(10): 2050-2057. |
6 | XuX, ChenC, QiH, et al. Development of coal combustion pollution control for SO2 and NOx in China[J]. Fuel Processing Technology, 2000, 62(2): 153-160. |
7 | ZhouZ J, LiuX W, ZhaoB, et al. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Processing Technology, 2015, 131: 99-108. |
8 | KampaM, CastanasE. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362-367. |
9 | MahlerB J, MetreP C V, CraneJ L, et al. Coal-tar-based pavement sealcoat and PAHs: implications for the environment, human health, and stormwater management[J]. Environmental Science & Technology, 2012, 46(6): 3039-3045. |
10 | LiuY, ShaoM, FuL, et al. Source profiles of volatile organic compounds (VOCs) measured in China(Part I)[J]. Atmospheric Environment, 2008, 42(25): 6247-6260. |
11 | BrownS K, SimM R, AbramsonM J, et al. Concentrations of volatile organic compounds in indoor air—a review[J]. Indoor Air, 1994, 4(2): 123-134. |
12 | Fernández-MartínezG, López-MahíaP, Muniategui-LorenzoS, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001, 35(33): 5823-5831. |
13 | ChenY, ShengG, BiX, et al. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China[J]. Environmental Science & Technology, 2005, 39(6): 1861-1867. |
14 | ChaggerH K, JonesJ M, PourkashanianM, et al. The formation of VOC, PAH and dioxins during incineration[J]. Process Safety and Environmental Protection, 2000, 78(1): 53-59. |
15 | PetryT, VitaleD, JoachimF J, et al. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles[J]. Regulatory Toxicology and Pharmacology, 2014, 69(1): 55-70. |
16 | 董小艳, 徐东群. 室内空气中挥发性有机化合物的污染现状及监测和评价方法[J]. 国外医学(卫生学分册), 2007, (3): 148-153. |
DongX Y, XuD Q. Current situation, monitoring and evaluation methods of volatile organic compounds in indoor air[J]. Foreign Medicine (Evectics Section), 2007, (3): 148-153. | |
17 | ShaoM, ZhangY, ZengL, et al. Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production[J]. Journal of Environmental Management, 2009, 90(1): 512-518. |
18 | PittsJ, Van CauwenbercheK, GrosjeanD, et al. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives[J]. Science, 1978, 202(4367): 515-519. |
19 | DengW J, LouieP K K, LiuW K, et al. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2.5 at an electronic waste recycling site in southeast China[J]. Atmospheric Environment, 2006, 40(36): 6945-6955. |
20 | HuangB, LeiC, WeiC, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71: 118-138. |
21 | AmannA, CostelloB D L, MiekischW, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. Journal of Breath Research, 2014, 8(3): 034001-034017. |
22 | KimK H, JahanS A, LeeJ T. Exposure to formaldehyde and its potential human health hazards[J]. Journal of Environmental Science and Health, Part C, 2011, 29(4): 277-299. |
23 | WangX T, MiaoY, ZhangY, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk[J]. Science of the Total Environment, 2013, 447: 80-89. |
24 | LundstedtS. Analysis of PAHs and their transformation products in contaminated soil and remedial processes [D]. Sweden: UME University, 2003. |
25 | 范志威. 煤燃烧过程中有机污染物的赋存及排放特性的研究[D]. 杭州: 浙江大学, 2005. |
FanZ W. Study of formation and emission characteristics of organic compounds during coal combustion[D]. Hangzhou: Zhejiang University, 2005. | |
26 | 晏蓉, 康忠汉. 煤燃烧排放有机污染物的试验研究[J]. 华中理工大学学报, 1996, (1): 4-7. |
YanR, KangZ H. An experimental study on the organic pollutants discharged from coal combustion[J]. Journal of Huazhong University of Technology, 1996, (1): 4-7. | |
27 | 李晓东, 姚艳, 严建华, 等. 中国部分煤种二氯甲烷萃取液中极性和烃类有机物分布特性研究[J]. 燃料化学学报, 2002, (6): 529-534. |
LiX D, YaoY, YanJ H, et al. Distribution of organic compounds in CH2Cl2 extracted solution of raw coal[J]. Journal of Fuel Chemistry and Technology, 2002, (6): 529-534. | |
28 | 晏蓉, 朱丽华, 朱海晶, 等. 原煤及其飞灰抽提液中有机污染物的研究[J]. 热力发电, 1997, (2): 13-18. |
YanR, ZhuL H, ZhuH J, et al. Study on organic pollutants in extractive solution of coal and its ash[J]. Thermal Power Generation, 1997, (2): 13-18. | |
29 | YuY R, FanX, ZhaoY P, et al. Analysis of soluble organic species of Huolinguole lignite by atmospheric pressure photoionization-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2017, 45(7): 1005-1011. |
30 | 王晓华, 熊玉春, 顾晓华, 等. 几种烟煤CS2萃取物的GC/MS分析[J]. 燃料化学学报, 2002, (1): 72-77. |
WangX H, XiongY C, GuX H, et al. GC/MS analyses of CS2-extraction from several biyuminous coals[J]. Journal of Fuel Chemistry and Technology, 2002, (1): 72-77. | |
31 | ZhaoZ B, LiuK, XieW, et al. Soluble polycyclic aromatic hydrocarbons in raw coals[J]. Journal of Hazardous Materials, 2000, 73(1): 77-85. |
32 | 范志威, 周俊虎, 谷月玲, 等. 顶空固相微萃取与色质联用研究煤中挥发性有机物[J]. 煤炭科学技术, 2004, 32: 53-55. |
FanZ W, ZhouJ H, GuY L, et al. Research on volatile organic matter of coal with top solid phase micro-extraction and color-quality combination[J]. Coal Science and Technology, 2004, 32: 53-55. | |
33 | SolomonP R, SerioM A, SuubergE M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18(2): 133-220. |
34 | De La PuenteG, IglesiasM J, FuenteE, et al. Changes in the structure of coals of different rank due to oxidation-effects on pyrolysis behaviour[J]. Journal of Analytical and Applied Pyrolysis, 1998, 47(1): 33-42. |
35 | LiX, MatuschekG, HerreraM, et al. Investigation of pyrolysis of Chinese coals using thermal analysis/mass spectrometry[J]. Journal of Thermal Analysis and Calorimetry, 2003, 71(2): 601-612. |
36 | KobayashiH, HowardJ B, SarofimA F. Coal devolatilization at high temperatures[J]. Symposium (International) on Combustion, 1977, 16(1): 411-425. |
37 | TylerR J. Flash pyrolysis of coals (1): Devolatilization of a Victorian brown coal in a small fluidized-bed reactor[J]. Fuel, 1979, 58(9): 680-686. |
38 | SuubergE M, PetersW A, HowardJ B. Product compositions and formation kinetics in rapid pyrolysis of pulverized coal—implications for combustion[J]. Symposium (International) on Combustion, 1979, 17(1): 117-130. |
39 | GadiouR, BouzidiY, PradoG. The devolatilisation of millimetre sized coal particles at high heating rate: the influence of pressure on the structure and reactivity of the char[J]. Fuel, 2002, 81(16): 2121-2130. |
40 | TomeczekJ, GilS. Volatiles release and porosity evolution during high pressure coal pyrolysis[J]. Fuel, 2003, 82(3): 285-292. |
41 | PoradaS. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis[J]. Fuel, 2004, 83(7): 1071-1078. |
42 | GongX, WangZ, DengS, et al. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy & Fuels, 2014, 28(8): 4942-4948. |
43 | JiaL, WengJ, WangY, et al. Online analysis of volatile products from bituminous coal pyrolysis with synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2013, 27(2): 694-701. |
44 | XuJ Y, ZhuoJ K, ZhuY, et al. Analysis of volatile organic pyrolysis products of bituminous and anthracite coals with single-photon ionization time-of-flight mass spectrometry and gas chromatography/mass spectrometry[J]. Energy & Fuels, 2017, 31(1): 730-737. |
45 | XuJ Y, ZhuoJ K, YaoQ. Prediction of ethylene and propylene release during coal pyrolysis with modified CPD model[J]. Fuel, 2018, 222: 544-549. |
46 | DykeP H, FoanC, FiedlerH. PCB and PAH releases from power stations and waste incineration processes in the UK[J]. Chemosphere, 2003, 50(4): 469-480. |
47 | 刘淑琴, 庞旭林, 王媛媛, 等. 不同煤种热解多环芳烃的生成分布特征研究[J]. 煤炭转化, 2011, (1): 1-6. |
LiuS Q, PangX L, WangY Y, et al. Study on the distribution characteristic of polycyclic aromatic hydrocarbons during pyrolysis of different coal ranks[J]. Coal Conversion, 2011, (1): 1-6. | |
48 | 李晓东, 祁明峰, 尤孝方, 等. 烟煤燃烧过程中多环芳烃生成研究[J]. 中国电机工程学报, 2002, (12): 127-132. |
LiX D, QiM F, YouX F, et al. Study on the formation of polycyclic aromatic hydrocarbons (PAH) mechanism in bituminous coal combustion process[J]. Proceedings of the CSEE, 2002, (12): 127-132. | |
49 | 李晓东, 傅钢, 尤孝方, 等. 不同煤种燃烧生成多环芳烃的研究[J]. 热能动力工程, 2003, (18): 125-127. |
LiX D, FuG, YouX F, et al. Study on the generation of polycyclic aromatic hydrocarbons by different types of coal combustion[J]. Journal of Engineering for Thermal Energy and Power, 2003, (18): 125-127. | |
50 | 张浩原, 刘桂建, 薛翦. 不同溶剂对提取原煤中PAHs种类、含量与分布的影响[J]. 环境化学, 2005, (24): 613-616. |
ZhangH Y, LiuG J, XueJ. The impact on the species, concentration and distribution of PAHs extracted by different solvents from raw coal[J]. Environmental Chemistry, 2005, (24): 613-616. | |
51 | 张浩原. 淮北煤田煤中多环芳烃析出规律及环境意义[D]. 合肥: 中国科学技术大学, 2005. |
ZhangH Y. Precipitation regularity and environmental significance of polycyclic aromatic hydrocarbons in Huaibei coalfield[D]. Hefei: University of Science and Technology of China, 2005. | |
52 | XueJ, LiuG J, NiuZ Y, et al. Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal[J]. Energy & Fuels, 2007, 21(2): 881-890. |
53 | 姜楠, 张丽萍, 孟彦如, 等. 煤燃烧过程中多环芳烃生成影响因素分析[J]. 中州煤炭, 2012, (1): 12-14. |
JiangN, ZhangL P, MengY R, et al. Analysis on influencing factors of polycyclic aromatic hydrocarbons formation during coal combustion[J]. Zhongzhou Coal, 2012, (1): 12-14. | |
54 | 晏蓉, 朱海晶, 刘皓, 等. 河南贫煤不同温度燃烧烟气中环烃类产物的分析研究[J]. 分析试验室, 1996, (2): 13-16. |
YanR, ZhuH J, LiuH, et al. Studies on compositions of products from coal combustion of Henan coal at different temperatures[J]. Journal of Analysis and Testing, 1996, (2): 13-16. | |
55 | KnoblochT E W. Identification of some polar polycyclic compounds in emissions from brown-coal-fired residential stoves[J]. Journal of High Resolution Chromatography, 1993, 16(4): 239-242. |
56 | 倪明江, 尤孝方, 李晓东, 等. 不同煤燃烧方式多环芳烃生成特性的研究[J]. 动力工程学报, 2004, (24) : 400-405. |
NiM J, YouX F, LiX D, et al. Study of PAHs formation from different kinds of coal combustion process[J]. Power Engineering, 2004, (24): 400-405. | |
57 | 傅钢. 煤燃烧过程中多环芳烃类有机污染物排放特性的研究[D]. 杭州: 浙江大学, 2002. |
FuG. Study on the emission characteristic of polycyclic aromatic hydrocarbons from coal combustion[D]. Hangzhou: Zhejiang University, 2002. | |
58 | MastralA M, CallN M S. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation[J]. Environmental Science & Technology, 2000, 34(15): 3051-3057. |
59 | MastralA M, CallN M S, MurilloR, et al. Assessment of PAH emissions as a function of coal combustion variables in fluidised bed (2): Air excess percentage[J]. Fuel, 1998, 77(13): 1513-1516. |
60 | GarciaJ P, Beyne-MascletS, MouvierG, et al. Emissions of volatile organic compounds by coal-fired power stations[J]. Atmospheric Environment Part A General Topics, 1992, 26(9): 1589-1597. |
61 | Fernández-MartínezG, López-VilariñoJ M, López-MahíaP, et al. Determination of volatile organic compounds in emissions by coal-fired power stations from Spain[J]. Environmental Technology, 2001, 22(5): 567-575. |
62 | Moreira Dos SantosC Y, De Almeida AzevedoD, De Aquino NetoF R. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station[J]. Atmospheric Environment, 2004, 38(9): 1247-1257. |
63 | PudasaineeD, KimJ H, LeeS H, et al. Hazardous air pollutants emission from coal and oil-fired power plants[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 299-303. |
64 | ShiJ, DengH, BaiZ, et al. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China[J]. Science of the Total Environment, 2015, 515/516: 101-108. |
65 | SzpunarC B. Air toxic emissions from the combustion of coal: identifying and quantifying hazardous air pollutants from US coals[R]. United States: IAEA, 1992. |
66 | 赵承美, 孙俊民, 刘惠永. 褐煤与烟煤燃烧排放可吸入颗粒物的特性[J]. 环境科学与技术, 2010, (33): 146-149. |
ZhaoC M, SunJ M, LiuH Y. Characteristics of inhalable particulate matters from lignite and bituminous coal combustion[J]. Environmental Science & Technology, 2010, (33): 146-149. | |
67 | 赵承美, 赵新富, 孙俊民, 等. 燃煤电厂排放可吸入颗粒物中多环芳烃的分布特征[J]. 信阳师范学院学报(自然科学版), 2008, 21: 203-205. |
ZhaoC M, ZhaoX F, SunJ M, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in inhalant particles which coal-fired plant emissions[J]. Journal of Xinyang Normal University(Natural Science Edition), 2008, 21: 203-205. | |
68 | WangR, LiuG, ZhangJ. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs[J]. Science of the Total Environment, 2015, 538: 180-190. |
69 | LiJ, LiX, LiM, et al. Influence of air pollution control devices on the polycyclic aromatic hydrocarbon distribution in flue gas from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2016, 30(11): 9572-9579. |
70 | LiJ, QiZ, LiM, et al. Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2017, 31(2): 1778-1785. |
71 | LiJ, LiX, ZhouC, et al. Correlation between polycyclic aromatic hydrocarbon concentration and particulate matter during the removal process of a low-low temperature electrostatic precipitator[J]. Energy & Fuels, 2017, 31(7): 7256-7262. |
72 | LiJ, LiX, ZhouC, et al. Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter[J]. Energy & Fuels, 2017, 31(12): 13233-13238. |
73 | LiX, LiJ, WuD, et al. Removal effect of the low-low temperature electrostatic precipitator on polycyclic aromatic hydrocarbons[J]. Chemosphere, 2018, 211: 44-49. |
74 | 梁斌, 白浩隆, 冯强, 等. 民用燃煤颗粒物及多环芳烃排放特性[J].化工学报, 2019, 70(8): 2888-2897. |
LiangB, BaiH L, FengQ, et al. Emissions of particulate matter and polycyclic aromatic hydrocarbons from household coal combustions[J]. CIESC Journal, 2019, 70(8): 2888-2897. | |
75 | LiC, MiH, LeeW, et al. PAH emission from the industrial boilers[J]. Journal of Hazardous Materials, 1999, 69(1): 1-11. |
76 | 宋婷. 环境空气和固定污染源中挥发性有机物监测方法探讨[J]. 环境与发展, 2018, (10): 125-126. |
SongT. Monitoring methods of volatile organic compounds in ambient air and stationary sources[J]. Environment and Development, 2018, (10): 125-126. | |
77 | GallegoE, RocaF J, PeralesJ F, et al. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs)[J]. Talanta, 2010, 81(3): 916-924. |
78 | HelmigD, MüllerJ, KleinW. Volatile organic substances in a forest atmosphere[J]. Chemosphere, 1989, 19(8): 1399-1412. |
79 | GallegoE, RocaF J, PeralesJ F, et al. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello® diffusive sampler for the analysis of VOCs[J]. Talanta, 2011, 85(1): 662-672. |
80 | MartinN A, MarlowD J, HendersonM H, et al. Studies using the sorbent Carbopack X for measuring environmental benzene with Perkin–Elmer-type pumped and diffusive samplers[J]. Atmospheric Environment, 2003, 37(7): 871-879. |
81 | OchiaiN, TsujiA, NakamuraN, et al. Stabilities of 58 volatile organic compounds in fused-silica-lined and SUMMA polished canisters under various humidified conditions[J]. Journal of Environmental Monitoring, 2002, 4(6): 879-889. |
82 | EvansJ C, HuckabyJ L, MitroshkovA V, et al. 32-Week holding-time study of SUMMA polished canisters and triple sorbent traps used to sample organic constituents in radioactive waste tank vapor headspace[J]. Environmental Science & Technology, 1998, 32(21): 3410-3417. |
83 | WangY, RaihalaT S, JackmanA P, et al. Use of Tedlar bags in VOC testing and storage: evidence of significant VOC losses[J]. Environmental Science & Technology, 1996, 30(10): 3115-3117. |
84 | MastralA M, CallN M, MayoralC, et al. Polycyclic aromatic hydrocarbon emissions from fluidized bed combustion of coal[J]. Fuel, 1995, 74(12): 1762-1766. |
85 | YanY, YangC, PengL, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143: 261-269. |
[1] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[2] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[3] | Yulong HUANG, Fan LYU, Junjie QIU, Hua ZHANG, Pinjing HE. Physicochemical properties and VOCs molecular characteristics of liquid digestate from anaerobic digestion of putrescible waste [J]. CIESC Journal, 2023, 74(3): 1275-1285. |
[4] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[5] | Zhidong LI, Jiaqi WAN, Ying LIU, Yixi TANG, Wei LIU, Zhongxian SONG, Xuejun ZHANG. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene [J]. CIESC Journal, 2022, 73(8): 3615-3624. |
[6] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[7] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[8] | Xue LI, Ming DONG, Huang ZHANG, Jun XIE. Kinetic characteristics of micro-particle impact on a flat surface under humidity conditions [J]. CIESC Journal, 2022, 73(5): 1940-1946. |
[9] | Haolong BAI, Liangliang FU, Guangwen XU, Dingrong BAI. Characteristics of gaseous nitrogen release in coal fluidized bed combustion under different atmospheres [J]. CIESC Journal, 2022, 73(2): 876-886. |
[10] | Xuan LIU, Yinjiao SU, Yang TENG, Kai ZHANG, Pengcheng WANG, Lifeng LI, Zhen LI. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash [J]. CIESC Journal, 2022, 73(2): 923-932. |
[11] | Xiaosong HOU, Chenxing LIU, Ailing REN, Bin GUO, Yuanming GUO. Study on purification of toluene waste gas by ultrasonic atomization/surfactants-enhanced absorption coupled with biological scrubbing [J]. CIESC Journal, 2022, 73(10): 4692-4706. |
[12] | Xu ZHAO, Changsheng BU, Xinye WANG, Xin ZHANG, Xiaolei CHENG, Naiji WANG, Guilin PIAO. Kinetics investigation on iron-based oxygen carrier aided oxy-fuel combustion of anthracite char [J]. CIESC Journal, 2022, 73(1): 384-392. |
[13] | JI Rongbin, CHEN Ting, PENG Chaohua, XIA Long, CHEN Guorong, LUO Wei'ang, ZENG Birong, XU Yiting, YUAN Conghui, DAI Lizong. Flame retardant epoxy resin composites modified with organophosphorus and boron hybrid molecules [J]. CIESC Journal, 2021, 72(7): 3856-3868. |
[14] | MA Zhibin, ZHANG Sen, SHAN Xueyuan, GUO Yanxia, CHENG Fangqin. Migration of lithium, gallium and rare earth elements in coal, coal slime, and coal gangue during combustion [J]. CIESC Journal, 2021, 72(6): 3349-3358. |
[15] | YU Chengyuan, WU Jinkui, ZHOU Li, JI Xu, DAI Yiyang, DANG Yagu. Prediction of energy conversion efficiency of organic solar cells based on deep learning [J]. CIESC Journal, 2021, 72(3): 1487-1495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||