CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 186-192.DOI: 10.11949/j.issn.0438-1157.20181217
• Energy and environmental engineering • Previous Articles Next Articles
Hongbin WANG1(),Jiajie PENG2,Haiquan SUN1,Quanwen PAN2(),Ruzhu WANG2,Hailiang WANG1,Zhaohong XU1
Received:
2018-10-17
Revised:
2019-01-23
Online:
2019-03-31
Published:
2019-03-31
Contact:
Quanwen PAN
王红斌1(),彭佳杰2,孙海权1,潘权稳2(),王如竹2,王海亮1,徐兆宏1
通讯作者:
潘权稳
作者简介:
<named-content content-type="corresp-name">王红斌</named-content>(1961—),男,教授级高级工程师, <email>408201618@qq.com</email>|潘权稳(1987—),男,博士,助理研究员,<email>sailote@sjtu.edu.cn</email>
CLC Number:
Hongbin WANG, Jiajie PENG, Haiquan SUN, Quanwen PAN, Ruzhu WANG, Hailiang WANG, Zhaohong XU. Design and experimental study on silica gel-water adsorption air cooler[J]. CIESC Journal, 2019, 70(S1): 186-192.
王红斌, 彭佳杰, 孙海权, 潘权稳, 王如竹, 王海亮, 徐兆宏. 硅胶-水吸附式冷风机组的设计及性能实验[J]. 化工学报, 2019, 70(S1): 186-192.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181217
参数 | 数值 |
---|---|
翅片长度/mm | 254 |
翅片宽度/mm | 56 |
翅片厚度/mm | 0.15 |
翅片间距/mm | 3 |
翅片段管长/mm | 300 |
换热管外径/mm | Φ9.54 |
换热管厚度/mm | 0.4 |
换热管间距/mm 水平 垂直 | 25(中心距) 22(中心距) |
硅胶颗粒直径/mm | 0.5~1.5 |
硅胶质量/kg | 2.8 |
Table 1 Dimension parameters of adsorption bed
参数 | 数值 |
---|---|
翅片长度/mm | 254 |
翅片宽度/mm | 56 |
翅片厚度/mm | 0.15 |
翅片间距/mm | 3 |
翅片段管长/mm | 300 |
换热管外径/mm | Φ9.54 |
换热管厚度/mm | 0.4 |
换热管间距/mm 水平 垂直 | 25(中心距) 22(中心距) |
硅胶颗粒直径/mm | 0.5~1.5 |
硅胶质量/kg | 2.8 |
参数 | 数值 |
---|---|
换热管外径/mm | Φ16 |
换热管长度/mm | 1054 |
流程数 | 10 |
换热管厚度/mm | 0.7 |
换热管数量 | 20 |
Table 2 Design parameters of condenser
参数 | 数值 |
---|---|
换热管外径/mm | Φ16 |
换热管长度/mm | 1054 |
流程数 | 10 |
换热管厚度/mm | 0.7 |
换热管数量 | 20 |
参数 | 数值 |
---|---|
换热管外径/mm | Φ16 |
换热管长度/mm | 800 |
微槽深度/mm | 28 |
流程数 | 4 |
换热管厚度/mm | 0.7 |
微槽宽度/mm | 300 |
换热管数量 | 44 |
Table 3 Design parameters of evaporator
参数 | 数值 |
---|---|
换热管外径/mm | Φ16 |
换热管长度/mm | 800 |
微槽深度/mm | 28 |
流程数 | 4 |
换热管厚度/mm | 0.7 |
微槽宽度/mm | 300 |
换热管数量 | 44 |
工作过程 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 |
---|---|---|---|---|---|---|---|---|
制冷过程1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
预热预冷过程1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
制冷过程2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
预热预冷过程2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Table 4 Operational control of silica gel-water adsorption air cooler
工作过程 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 |
---|---|---|---|---|---|---|---|---|
制冷过程1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
预热预冷过程1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
制冷过程2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
预热预冷过程2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
名称 | 规格 | 精度 |
---|---|---|
温度传感器 | A级Pt100 | 0.15℃ |
电磁流量计 | ZK-LDE-25-PO-4 | 0.5% |
电磁流量计 | ICF300F | -15%~10% |
温湿度记录仪 | TH22R-EX | 温度精度±0.1℃, 湿度精度 ±1.5%RH |
热线式风速仪 | AR866 | ±3%±0.1dgt |
Table 5 Measuring equipment and parameters
名称 | 规格 | 精度 |
---|---|---|
温度传感器 | A级Pt100 | 0.15℃ |
电磁流量计 | ZK-LDE-25-PO-4 | 0.5% |
电磁流量计 | ICF300F | -15%~10% |
温湿度记录仪 | TH22R-EX | 温度精度±0.1℃, 湿度精度 ±1.5%RH |
热线式风速仪 | AR866 | ±3%±0.1dgt |
参数 | 制冷量 | COP |
---|---|---|
相对误差范围 | 5.29%~6.89% | 8.99%~13.09% |
Table 6 Relative errors of experimental results
参数 | 制冷量 | COP |
---|---|---|
相对误差范围 | 5.29%~6.89% | 8.99%~13.09% |
1 | PanQ W, WangR Z. Study on operation strategy of a silica gel-water adsorption chiller in solar cooling application[J]. Solar Energy, 2018, 172: 24-31. |
2 | 孟晓伟, 武卫东, 朱成剑.用于吸附单元管的烧结沸石吸附剂的性能强化实验[J].制冷技术, 2014, 34(2): 20-25. |
MengX W, WuW D, ZhuC J. Experiment on performance strengthening of sintered zeolite adsorbent for adsorption unit tube[J]. Chinese Journal of Refrigeration Technology, 2014, 34(2): 20-25. | |
3 | LuZ S, WangR Z. Performance improvement by mass-heat recovery of an innovative adsorption air-conditioner driven by 50-80℃ hot water[J]. Applied Thermal Engineering, 2013, 55(1/2): 113-120. |
4 | WangD, ZhangJ, TianX, et al. Progress in silica gel-water adsorption refrigeration technology[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 85-104. |
5 | GBU-Model Type NAK-Adsorptions Chiller [DB/OL]. 2018.https: //. |
6 | Silica Gel Chillers eCoo [DB/OL]. 2018 .http: //fahrenheit cool/en/products/chillers/ecoo/. |
7 | SahaB B, AkisawaA, KashiwagiT. Solar/waste heat driven two-stage adsorption cooler: the prototype[J]. Renewable Energy, 2001, 23(1): 93-101. |
8 | SahaB B, KoyamaS, Choon NgK, et al. Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller[J]. Renewable Energy, 2006, 31(13): 2076-2090. |
9 | ChangW S, WangC C, ShiehC C. Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller[J]. Applied Thermal Engineering, 2009, 29(10): 2100-5. |
10 | MagnettoD, de BoerR, VastaS. TOPMACS: thermally operated mobile air conditioning systems[C]//Vehicle Thermal Management Systems Conference and Exhibition (VTMS10). Woodhead Publishing, 2011: 635-647. |
11 | WangD C, WuJ Y, XiaZ Z, et al. Study of a novel silica gel–water adsorption chiller (Ⅱ): Experimental study[J]. International Journal of Refrigeration, 2005, 28(7): 1084-1091. |
12 | ChenC J, WangR Z, XiaZ Z, et al. Study on a compact silica gel-water adsorption chiller without vacuum valves: design and experimental study[J]. Applied Energy, 2010, 87(8): 2673-2681. |
13 | LuZ S, WangR Z, XiaZ Z, et al. Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol[J]. Energy Conversion and Management, 2013, 65: 430-437. |
14 | PanQ W, WangR Z, WangL W, et al. Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers[J]. International Journal of Refrigeration, 2016, 67: 336-44. |
15 | KhalilA, El-AgouzE A, El-SamadonyY A F, et al. Experimental study of silica gel/water adsorption cooling system using a modified adsorption bed[J]. Science and Technology for the Built Environment, 2016, 22(1): 41-49. |
16 | RamyH M, OsamaM, MohamedL E, et al. Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers[J]. Applied Thermal Engineering, 2018, 137: 368-376. |
17 | RamyH M, OsamaM, MohamedL E, et al. Revisiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications[J]. International Journal of Refrigeration, 2018, 86: 40-47. |
18 | SouravM, KyawT, BidyutB S, et al. Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system[J]. Applied Energy, 2017, 206: 507-518. |
19 | SapienzaA, GullìG, CalabreseL, et al. An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers[J]. Applied Energy, 2016, 179: 929-938. |
20 | SapienzaA, PalombaV, GullìG, et al. A new management strategy based on the reallocation of ads-/desorption times: experimental operation of a full-scale 3 beds adsorption chiller[J]. Applied Energy, 2017, 205: 1081-1090. |
21 | PauloJ V, JoséJ S, HerbertM, et al. Experimental chiller with silica gel: adsorption kinetics analysis and performance evaluation[J]. Energy Conversion and Management, 2017, 132: 172-179. |
22 | ChenQ F, DuS W, YuanZ X, et al. Experimental study on performance change with time of solar adsorption refrigeration system[J]. Applied Thermal Engineering, 2018, 138: 386-393. |
23 | FatihB, BenyoucefK, MiloudT. Experimental investigation of a solar adsorption refrigeration system working with silica gel/water pair: a case study for Bou-Ismail solar data[J]. Solar Energy, 2016, 131: 165-175. |
24 | GhilenN, GabsiS, MessaiS, et al. Performance of silica gel-water solar adsorption cooling system[J]. Case Studies in Thermal Engineering, 2016, 8: 337-345. |
25 | SouravM, PramodK, KandadaiS, et al. Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system[J]. International Journal of Refrigeration, 2016, 67: 174-189. |
26 | BidyutB S, ShigeruK, KimC N, et al. Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller[J]. Renewable Energy, 2005, 31(13): 2076-2090. |
27 | YangG Z, XiaZ Z, WangR Z, et al. Research on a compact adsorption room air conditioner[J]. Energy Conversion and Management, 2006, 47(15/16): 2167-2177. |
28 | 潘权稳. 采用模块化吸附床的硅胶-水吸附式系统制冷性能研究及优化[D]. 上海: 上海交通大学, 2015. |
PanQ W. Performance study and optimization of silica gel-water adsorption refrigeration system using modular adsorber[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
29 | 中华人民共和国国家质量监督检疫总局, 中国国家标准化管理委员会. 房间空气调节器: GB/T 7725—2004[S]. 北京: 中国标准出版社, 2004. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Room air conditioners: GB/T 7725—2004[S]. Beijing: Standards Press of China, 2004. | |
30 | 国家质量监督检验检疫总局, 卫生部, 国家环境保护总局. 室内空气质量: GB/T 18883—2002[S]. 北京: 中国标准出版社, 2002. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Ministry of Health of the People’s Republic of China, Ministry of Environmental Protection of the People’s Republic of China. Indoor air quality standard: GB/T 18883—2002[S]. Beijing: Standards Press of China, 2002. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[9] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[10] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[13] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[14] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||