CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4981-4989.DOI: 10.11949/0438-1157.20200248
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Yaju CHEN1(),Zhongxiu LIANG2,Xiantai ZHOU2,Hongbing JI1,2()
Received:
2020-03-11
Revised:
2020-05-18
Online:
2020-11-05
Published:
2020-11-05
Contact:
Hongbing JI
通讯作者:
纪红兵
作者简介:
陈亚举(1989—),男,博士,讲师,基金资助:
CLC Number:
Yaju CHEN,Zhongxiu LIANG,Xiantai ZHOU,Hongbing JI. CoTPP-TBAB catalyzed tandem transformation of styrene carbonate from styrene in the presence of O2 and CO2[J]. CIESC Journal, 2020, 71(11): 4981-4989.
陈亚举,梁中秀,周贤太,纪红兵. 钴卟啉-四丁基溴化铵串联催化苯乙烯在氧气和二氧化碳中合成碳酸苯乙烯酯[J]. 化工学报, 2020, 71(11): 4981-4989.
Add to citation manager EndNote|Ris|BibTeX
Entry | CoTPP/mmol | TBAB/mmol | MCC/mmol | Reaction time /h | Conv. ②/% | Yield ② /% | ||
---|---|---|---|---|---|---|---|---|
SC | SO | BA | ||||||
1 | 0.005 | — | 5.0 | 12 | 99 | 1 | 7 | 13 |
2 | — | 0.1 | 5.0 | 12 | 46 | 5 | 1 | 3 |
3 | 0.005 | 0.1 | 5.0 | 12 | 99 | 20 | 2 | 13 |
4 | 0.005 | 0.3 | 5.0 | 12 | 99 | 20 | 2 | 10 |
5 | 0.005 | 0.5 | 5.0 | 12 | 99 | 21 | 2 | 10 |
6 | 0.005 | 0.5 | 5.0 | 26 | 99 | 21 | 2 | 7 |
7 | 0.005 | 0.5 | 1.0 | 12 | 47 | 14 | 1 | 12 |
8 | 0.005 | 0.5 | 2.0 | 12 | 99 | 35 | 2 | 12 |
9 | 0.005 | 0.5 | 3.0 | 12 | 99 | 34 | 3 | 14 |
Table 1 Results of the direct synthesis of styrene carbonate from styrene, dioxygen and carbon dioxide①
Entry | CoTPP/mmol | TBAB/mmol | MCC/mmol | Reaction time /h | Conv. ②/% | Yield ② /% | ||
---|---|---|---|---|---|---|---|---|
SC | SO | BA | ||||||
1 | 0.005 | — | 5.0 | 12 | 99 | 1 | 7 | 13 |
2 | — | 0.1 | 5.0 | 12 | 46 | 5 | 1 | 3 |
3 | 0.005 | 0.1 | 5.0 | 12 | 99 | 20 | 2 | 13 |
4 | 0.005 | 0.3 | 5.0 | 12 | 99 | 20 | 2 | 10 |
5 | 0.005 | 0.5 | 5.0 | 12 | 99 | 21 | 2 | 10 |
6 | 0.005 | 0.5 | 5.0 | 26 | 99 | 21 | 2 | 7 |
7 | 0.005 | 0.5 | 1.0 | 12 | 47 | 14 | 1 | 12 |
8 | 0.005 | 0.5 | 2.0 | 12 | 99 | 35 | 2 | 12 |
9 | 0.005 | 0.5 | 3.0 | 12 | 99 | 34 | 3 | 14 |
Fig.11 Three-dimensional stack plot of in-situ IR spectra collected every 1 min during the coupling reaction of SO and CO2 over TBAB(a); changes of the epoxide ring and SC vibrational peaks at different time(b)
1 | Rahman F A, Aziz M M A, Saidur R, et al. Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future[J]. Renew. Sust. Energy Rev., 2017, 71: 112-126. |
2 | Appel A M, Bercaw J E, Bocarsly A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chem. Rev., 2013, 113(8): 6621-6658. |
3 | Tapia J F D, Lee J Y, Ooi R E H, et al. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems[J]. Sustainable Production Consumption, 2018, 13: 1-15. |
4 | Dowell N M, Fennell P S, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nat. Clim. Change, 2017, 7(4): 243-249. |
5 | He M Y, Sun Y H, Han B X. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling[J]. Angew. Chem. Int. Ed., 2013, 52(37): 9620-9633. |
6 | Artz J, Muller T E, Thenert K, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment[J]. Chem. Rev., 2018, 118(2): 434-504. |
7 | Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide[J]. Chem. Rev., 2007, 107(6): 2365-2387. |
8 | Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2[J]. Chem. Rev., 2014, 114(3): 1709-1742. |
9 | 张文珍, 张宁, 郭春晓, 等. 二氧化碳参与的环化反应最新研究进展[J]. 有机化学, 2017, 37(6): 1309-1321. |
Zhang W Z, Zhang N, Guo C X, et al. Recent progress in the cyclization reactions using carbon dioxide[J]. Chin. J. Org. Chem., 2017, 37(6): 1309-1321. | |
10 | Song Q W, Zhou Z H, He L N. Efficient, selective and sustainable catalysis of carbon dioxide[J]. Green Chem., 2017, 19(16): 3707-3728. |
11 | Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide[J]. Chem. Commun., 2009, (11): 1312-1330. |
12 | Shaikh R R, Pornpraprom S, D􀆳Elia V. Catalytic strategies for the cycloaddition of pure, diluted and waste CO2 to epoxides under ambient conditions[J]. ACS Catal.,2018, 8(1): 419-450. |
13 | Schäffner B, Friederike S, Verevkin S P, et al. Organic carbonates as solvents in synthesis and catalysis[J]. Chem. Rev., 2010, 110(8): 4554–4581. |
14 | Shaikh A G, Sivaram S. Organic carbonates[J]. Chem. Rev., 1996, 96(3): 951-976. |
15 | North M, Pasquale R, Young C. Synthesis of cyclic carbonates from epoxides and CO2[J]. Green Chem., 2010, 12(9): 1514-1539. |
16 | Liang J, Huang Y B, Cao R. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates[J]. Coord. Chem. Rev., 2019, 378: 32-65. |
17 | 罗荣昌, 周贤太, 杨智, 等. 均相体系中酸碱协同催化二氧化碳与环氧化物的环加成反应[J]. 化工学报, 2016, 67(1): 258-276. |
Luo R C, Zhou X T, Yang Z, et al. Acid-base synergistic effect promoted cycloaddition reaction from CO2 with epoxide in homogenous catalysis systems[J]. CIESC Journal, 2016, 67(1): 258-276. | |
18 | Liu J, Yang G Q, Liu Y, et al. Metal-free imidazolium hydrogen carbonate ionic liquids as bifunctional catalysts for the one-pot synthesis of cyclic carbonates from olefins and CO2[J]. Green Chem., 2019, 21(14): 3834-3838. |
19 | Sun J, Fujita S, Bhanage B M, et al. One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide[J]. Catal. Today, 2004, 93-95: 383-388. |
20 | Sun J, Fujita S, Bhanage B M, et al. Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids[J]. Catal. Commun., 2004, 5(2): 83-87. |
21 | Sun J M, Fujita S, Zhao F Y, et al. A direct synthesis of styrene carbonate from styrene with the Au/SiO2ZnBr2/Bu4NBr catalyst system[J]. J. Catal., 2005, 230(2): 398-405. |
22 | 孙建敏, 王路, 王亚丽, 等. 溴化锌-卤化正四丁基铵高效催化合成苯乙烯环状碳酸酯[J]. 高等学校化学学报, 2007, 28(3): 502-505. |
Sun J M, Wang L, Wang Y L, et al. Synthesis of styrene carbonate catalyzed by efficiently by zinc bromide and tetra-n-butylammonium halides[J]. Chem. J. Chin. Univ., 2007, 28(3): 502-505. | |
23 | Wang Y L, Sun J H, Xiang D, et al. A facile, direct synthesis of styrene carbonate from styrene and CO2 catalyzed by Au/Fe(OH)3-ZnBr2/Bu4NBr system[J]. Catal. Lett., 2009, 129(3/4): 437-443. |
24 | Xiang D, Liu X F, Sun J S, et al. A novel route for synthesis of styrene carbonate using styrene and CO2 as substrates over basic resin R201 supported Au catalyst[J]. Catal. Today, 2009, 148(3/4): 383-388. |
25 | Han Q X, Qi B, Ren W M, et al. Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins[J]. Nat.Commun., 2015, 6: 10007-10014. |
26 | Ono F, Qiao K, Tomida D, et al. Direct preparation of styrene carbonates from styrene using an ionic-liquid-based one-pot multistep synthetic process[J]. Appl. Catal. A, 2007, 333(1): 107-113. |
27 | Eghbali N, Li C J. Conversion of carbon dioxide and olefins into cyclic carbonates in water[J]. Green Chem., 2007, 9(3): 213-215. |
28 | Zou B, Hu C W. Synthesis of cyclic carbonates from alkenyl and alkynyl substrates[J]. Chin. J. Chem., 2017, 35(5): 541-550. |
29 | Mukherjee A. Biomimetics, Learning from Nature[M]. Vukovar: IntechOpen, 2010. |
30 | Que L J, Tolman W B. Biologically inspired oxidation catalysis[J]. Nature, 2008, 455: 333-340. |
31 | Pereira M M, Dias L D, Calvete M J F. Metalloporphyrins: bioinspired oxidation catalysts[J]. ACS Catal., 2018, 8(11): 10784-10808. |
32 | 周贤太, 纪红兵. 金属卟啉仿生催化氧化合成有机化工产品[J]. 精细化工, 2013, 30(4): 425-432. |
Zhou X T, Ji H B. synthesis of organic chemical products by metalloporphyrins-based biomimetic catalytic oxidation[J]. Fine Chem., 2013, 30(4): 425-432. | |
33 | Zhou X T, Ji H B. Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins[J]. Chem. Eng. J., 2010, 156(2): 411-417. |
34 | Zhou X T, Tang Q H, Ji H B. Remarkable enhancement of aerobic epoxidation reactivity for olefins catalyzed by μ-oxo-bisiron(III) porphyrins under ambient conditions[J]. Tetrahedron Lett., 2009, 50(47): 6601-6605. |
35 | Schroder K, Join B, Amali A J, et al. A biomimetic iron catalyst for the epoxidation of olefins with molecular oxygen at room temperature[J]. Angew. Chem. Int. Ed., 2011, 50(6): 1425-1429. |
36 | Rocha C C, Onfroy T, Launay F. Towards a combined use of Mn(Salen) and quaternary ammonium salts as catalysts for the direct conversion of styrene to styrene carbonate in the presence of dioxygen and carbon dioxide[J]. Comptes Rendus Chimie, 2015, 18(3): 270-276. |
37 | Niño M E, Giraldo S A, Páez-Mozo E A. Olefin oxidation with dioxygen catalyzed by porphyrins and phthalocyanines intercalated in α-zirconium phosphat[J]. J. Mol. Catal. A-Chem., 2001, 175(1/2): 139-151. |
38 | Luo R C, Zhou X T, Zhang W Y, et al. New bi-functional zinc catalysts based on robust and easy-to-handle N-chelating ligands for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Green Chem., 2014, 16(9): 4179-4189. |
39 | D'Elia V, Ghani A A, Monassier A, et al. Dynamics of the NbCl5-catalyzed cycloaddition of propylene oxide and CO2: assessing the dual role of the nucleophilic Co-catalysts[J]. Chem. Eur. J., 2014, 20(37): 11870-11882. |
40 | Punniyamurthy T, Bhatia B, Reddy M M, et al. A versatile cobalt(Ⅱ)-Schiff base catalyzed oxidation of organic substrates with dioxygen: scope and mechanism[J]. Tetrahedron, 1997, 53(22): 7649-7670. |
41 | Yang Z Z, Zhao Y N, He L N. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion[J]. RSC Adv., 2011, 1(4): 545-567. |
42 | Chen Y J, Luo R C, Bao J H, et al. Function-oriented ionic polymers having high-density active sites for sustainable carbon dioxide conversion[J]. J. Mater. Chem. A, 2018, 6(19): 9172-9182. |
43 | Chen Y J, Luo R C, Xu Q H, et al. Charged metalloporphyrin polymers for cooperative synthesis of cyclic carbonates from CO2 under ambient conditions[J]. ChemSusChem, 2017, 10(11): 2534-2541. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[5] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[6] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[7] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[8] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[9] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[10] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[11] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[12] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[13] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[14] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[15] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||