CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4990-4998.DOI: 10.11949/0438-1157.20200810
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Yuefeng WU(),Yongfang QU,Dahuan LI,Miaojun SU,Yong LIU()
Received:
2020-06-22
Revised:
2020-09-10
Online:
2020-11-05
Published:
2020-11-05
Contact:
Yong LIU
通讯作者:
刘勇
作者简介:
吴岳峰(1995—),男,硕士研究生,基金资助:
CLC Number:
Yuefeng WU,Yongfang QU,Dahuan LI,Miaojun SU,Yong LIU. Study on oxidation of styrene with molecular oxygen catalyzed by MoO2/Ag on polyionic liquid[J]. CIESC Journal, 2020, 71(11): 4990-4998.
吴岳峰,曲永芳,李大欢,苏苗军,刘勇. 聚离子液体载MoO2/Ag催化分子氧氧化苯乙烯的研究[J]. 化工学报, 2020, 71(11): 4990-4998.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | SBET /(m2/g) | vp/(cm3/g) | dp/nm |
---|---|---|---|
PVAD | 86.6 | 0.13 | 9.43 |
PVAD/MoO2/Ag4% | 141.8 | 0.21 | 8.79 |
Table 1 Structural properties of catalysts
催化剂 | SBET /(m2/g) | vp/(cm3/g) | dp/nm |
---|---|---|---|
PVAD | 86.6 | 0.13 | 9.43 |
PVAD/MoO2/Ag4% | 141.8 | 0.21 | 8.79 |
溶剂 | 转化率/% | 选择性/% | |
---|---|---|---|
苯甲醛 | 苯乙烯氧化物 | ||
MeCN | 34.0 | 84.4 | 3.2 |
DMF | 23.1 | 12.2 | 10.8 |
DCM | 4.19 | 100 | 0 |
PhMe | 1.4 | 100 | 0 |
EtOH | 12.5 | 78.8 | 5.4 |
Table 2 Effects of solvents on the results of catalytic oxidation of styrene
溶剂 | 转化率/% | 选择性/% | |
---|---|---|---|
苯甲醛 | 苯乙烯氧化物 | ||
MeCN | 34.0 | 84.4 | 3.2 |
DMF | 23.1 | 12.2 | 10.8 |
DCM | 4.19 | 100 | 0 |
PhMe | 1.4 | 100 | 0 |
EtOH | 12.5 | 78.8 | 5.4 |
催化剂 | 转化率/% | 选择性/% | |
---|---|---|---|
苯甲醛 | 苯乙烯 氧化物 | ||
PVAD/MoO2 PVAD/MoO2/Ag2% | 16.7 27.3 | 83.9 84.9 | 2.3 2.8 |
PVAD/MoO2/Ag4% | 34.0 | 84.4 | 3.2 |
PVAD/MoO2/Ag7% | 24.0 | 84.7 | 3.0 |
PVAD/MoO2/Ag10% | 19.0 | 83.1 | 2.7 |
Table 3 Effect of Ag loading on catalyst activity
催化剂 | 转化率/% | 选择性/% | |
---|---|---|---|
苯甲醛 | 苯乙烯 氧化物 | ||
PVAD/MoO2 PVAD/MoO2/Ag2% | 16.7 27.3 | 83.9 84.9 | 2.3 2.8 |
PVAD/MoO2/Ag4% | 34.0 | 84.4 | 3.2 |
PVAD/MoO2/Ag7% | 24.0 | 84.7 | 3.0 |
PVAD/MoO2/Ag10% | 19.0 | 83.1 | 2.7 |
催化剂 | 氧化剂 | 温度/℃ | 时间/h | 转化率/% | 选择性/% | 文献 |
---|---|---|---|---|---|---|
PVAD/MoO2/Ag | O2 | 90 | 8 | 49.9 | 74.4 | this work |
PVAD/MoO2/Ag | O2 | 80 | 8 | 34.0 | 84.4 | this work |
MOF-74(Cu-30/Co-70) | O2 | 80 | 20 | 30.4 | 43 | [ |
Au NPs@XAD-4-G3.0 PAMAM | O2 | 80 | 24 | 80 | 48 | [ |
SO42--Fe-V/ZrO2 | H2O2 | 80 | 4 | 62.3 | 74.0 | [ |
H3PW12O40/SBA-15 | H2O2 | 70 | 24 | 22.6 | 100.0 | [ |
Mg0.5Cu0.5Fe2O4 | H2O2 | 80 | 6 | 21.2 | 75.2 | [ |
Ce0.95Zr0.05O2 | TBHP | 80 | 12 | 70.2 | 31.3 | [ |
ZSM-5(60) | TBHP | 65 | 6 | 45.3 | 87.2 | [ |
Table 4 Results of the catalytic oxidation of styrene with different catalysts
催化剂 | 氧化剂 | 温度/℃ | 时间/h | 转化率/% | 选择性/% | 文献 |
---|---|---|---|---|---|---|
PVAD/MoO2/Ag | O2 | 90 | 8 | 49.9 | 74.4 | this work |
PVAD/MoO2/Ag | O2 | 80 | 8 | 34.0 | 84.4 | this work |
MOF-74(Cu-30/Co-70) | O2 | 80 | 20 | 30.4 | 43 | [ |
Au NPs@XAD-4-G3.0 PAMAM | O2 | 80 | 24 | 80 | 48 | [ |
SO42--Fe-V/ZrO2 | H2O2 | 80 | 4 | 62.3 | 74.0 | [ |
H3PW12O40/SBA-15 | H2O2 | 70 | 24 | 22.6 | 100.0 | [ |
Mg0.5Cu0.5Fe2O4 | H2O2 | 80 | 6 | 21.2 | 75.2 | [ |
Ce0.95Zr0.05O2 | TBHP | 80 | 12 | 70.2 | 31.3 | [ |
ZSM-5(60) | TBHP | 65 | 6 | 45.3 | 87.2 | [ |
1 | Zhou T, Zhang J, Ma Y Y, et al. A bicadmium-substituted polyoxometalate network based on a vanadosilicate cluste for the selective oxidation of styrene to benzaldehyde[J]. Inorganic Chemistry, 2020, 59(9): 5803-5807. |
2 | Das D R, Kalita P, Talukdar A K. Ti/Cr incorporated mesoporous MCM-48 for oxidation of styrene to benzaldehyde[J]. Journal of Porous Materials, 2020, 27: 893-903. |
3 | Clara S, Liliana B P. Studies on styrene selective oxidation to benzaldehyde catalyzed by Cr-ZSM-5: reaction parameters effects and kinetics[J]. Applied Catalysis A: General, 2011, 400: 117-121. |
4 | Lu C, Meng Y N, Zhou A D, et al. The synergistic effect of benzyl benzoate on the selective oxidation of toluene to benzaldehyde[J]. Chemical Engineering Research and Design, 2018, 141: 181-186. |
5 | Mahmoud N, Mojtaba B, Hirbod K. Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzylalcohol to benzaldehyde and reduction of organic dyes[J]. Journal of Colloid and Interface Science, 2016, 465: 271-278. |
6 | Cheng D G, Chong M B, Chen F Q, et al. XPS characterization of CeO2 catalyst for hydrogenation of benzoic acid to benzaldehyde[J]. Catalysis Letters, 2008, 120(1/2): 82-85. |
7 | Lv J G, Shen Y, Peng L M, et al. Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen[J]. Chemical Communications, 2010, 46(32): 5909-5911. |
8 | Liu J Y, Wang Z H, Jian P M, et al. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst[J]. Journal of Colloid and Interface Science, 2018, 517: 144-154. |
9 | Li Y J, Qiu P, Zhao Y Z, et al. Fabricating surface-functionalized CsPbBr3/Cs4PbBr6 nanosheets for visible-light photocatalytic oxidation of styrene[J]. Frontiers in Chemistry, 2020, 8: 130. |
10 | Marchena C L, Pecchi G A, Pierella L B. Selective styrene oxidation on alkaline tantalates ATaO3 (A=Li, Na, K) as heterogeneous catalysts[J]. Catalysis Communications, 2019, 119: 28-32. |
11 | Thao N T, Trung H H. Selective oxidation of styrene over Mg-Co-Al hydrotalcite like-catalysts using air as oxidant[J]. Catalysis Communications, 2014, 45: 153-157. |
12 | Zhu X C, Shen R W, Zhang L X. Catalytic oxidation of styrene to benzaldehyde over a copper Schiff-base/SBA-15 catalyst[J]. Chinese Journal of Catalysis, 2014, 35(10): 1716-1726. |
13 | Li Z N, Gao Y, Zhang X X. Oxidation of styrene to benzaldehyde by p-toluenesulfonic acid using hydrogen peroxide in the presence of activated carbon[J]. Chinese Journal of Catalysis, 2015, 36(5): 721-727. |
14 | Liu J H, Wang F, Gu Z G, et al. Vanadium phosphorus oxide catalyst modified by silver doping for mild oxidation of styrene to benzaldehyde[J]. Chemical Engineering Journal, 2009, 151(1/2/3): 319-323. |
15 | Narayanan S, Vijaya J J, Sivasanker S, et al. Hierarchical ZSM-5 catalytic performance evaluated in the selective oxidation of styrene to benzaldehyde using TBHP[J]. Journal of Porous Materials, 2016, 23(3): 741-752. |
16 | Kohantorabi M, Gholami M R. Cyclohexene oxidation catalyzed by flower-like core-shell Fe3O4@Au/metal organic frameworks nanocomposite[J]. Materials Chemistry and Physics, 2018, 213: 472-481. |
17 | Feng B, Hou Z S, Wang X R, et al. Selective aerobic oxidation of styrene to benzaldehyde catalyzed by water-soluble palladium(II) complex in water[J]. Green Chemistry, 2009, 11(9): 1446-1452. |
18 | Rak M J, Lerro M, Moores A. Hollow iron oxide nanoshells are active and selective catalysts for the partial oxidation of styrene with molecular oxygen[J]. Chemical Communications, 2014, 50(83): 12482-12485. |
19 | Datta S J, Yoon K B. Co-ETS-10 and Co-AM-6 as active catalysts for the oxidation of styrene to styrene oxide and benzaldehyde using molecular oxygen[J]. Chinese Journal of Catalysis, 2015, 36(6): 897-905. |
20 | Chandra P, Doke D S, Umbarkar S B, et al. One-pot synthesis of ultrasmall MoO3 nanoparticles supported on SiO2, TiO2, and ZrO2 nanospheres: an efficient epoxidation catalyst[J]. Journal of Materials Chemistry A, 2014, 2(44): 19060-19066. |
21 | Wang J S, Li X, Zhang S F, et al. Facile synthesis of ultrasmall monodisperse “raisin-bun”-type MoO3/SiO2 nanocomposites with enhanced catalytic properties[J]. Nanoscale, 2013, 5(11): 4823. |
22 | Zhang Q, Zhang, M H, Wiltowski T. Adsorption and dissociation of O2 on MoO2(111) surfaces: a DFT study[J]. Physical Chemistry Chemical Physics, 2017, 19(43): 29244. |
23 | Antoine D, Martina E J, Ferdinand B, et al. Activation of molecular oxygen by a molybdenum complex for catalytic oxidation[J]. Dalton Transactions, 2015, 44: 20514. |
24 | Campbell C T. Atomic and molecular oxygen adsorption on Ag(111)[J]. Surface Science, 1985, 157: 43-60. |
25 | Acharyya S S, Ghosh S, Sharma S K, et al. Cetyl alcohol mediated fabrication of forest of Ag/Mn3O4 nanowhiskers catalyst for the selective oxidation of styrene with molecular oxygen[J]. RSC Advances, 2015, 5(109): 89879-89887. |
26 | Lee E J, Lee J, Seo Y J, et al. Direct epoxidation of propylene to propylene oxide with molecular oxygen over Ag-Mo-W/ZrO2 catalysts[J]. Catalysis Communications, 2017, 89: 156-160. |
27 | Qian W J, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications[J]. Chemical Society Reviews, 2017, 46(4): 1124-1159. |
28 | Zhang Y F, Zhang Y Y, Chen B H. Swelling poly (ionic liquid)s: heterogeneous catalysts that are superior than homogeneous catalyst for ethylene carbonate transformation[J]. ChemistrySelect, 2017, 2(29): 9443-9449. |
29 | Qin L, Wang B S, Zhang Y Y, et al. Anion exchange: a novel way of preparing hierarchical porous structure in poly(ionic liquid)s[J]. Chem. Commun., 2017, 53(26): 3785-3788. |
30 | Li W Y, Zong Y X, Wang J K, et al. Sulfonated poly(4-vinylpyridine) heteropolyacid salts: a reusable green solid catalyst for Mannich reaction[J]. Chinese Chemical Letters, 2014, 25(4): 575-578. |
31 | Wilke A, Yuan J Y, Antonietti M, et al. Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid)[J]. ACS Macro Letters, 2012, 1(8): 1028-1031. |
32 | Riduan S N, Zhang Y G. Imidazolium salts and their polymeric materials for biological applications[J]. Chemical Society Reviews, 2013, 42(23): 9055-9070. |
33 | Wu Z W, Chen C, Guo Q R, et al. Novel approach for preparation of poly (ionic liquid) catalyst with macroporous structure for biodiesel production[J]. Fuel, 2016, 184(15): 128-135. |
34 | Wang Q, Cai X C, Liu Y Q, et al. Pd nanoparticles encapsulated into mesoporous ionic copolymer: efficient and recyclable catalyst for the oxidation of benzyl alcohol with O2 balloon in water[J]. Applied Catalysis. B: Environmental, 2016, 189: 242-251. |
35 | Wang Q, Hou W, Li S, et al. Hydrophilic mesoporous poly(ionic liquid)-supported Au-Pd alloy nanoparticles towards aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid under mild conditions[J]. Green Chemistry, 2017, 19: 3820-3830. |
36 | Hou W, Wang Q, Guo Z J, et al. Nanobelt α-CuV2O6 with hydrophilic mesoporous poly(ionic liquid): a binary catalyst for synthesis of 2, 5-diformylfuran from fructose[J]. Catalysis Science & Technology, 2017, 7(4): 1006-1016. |
37 | Opre Z, Mallat T, Baiker A. Epoxidation of styrene with cobalt-hydroxyapatite and oxygen in dimethylformamide: a green technology[J]. Journal of Catalysis, 2007, 245(2): 482-486. |
38 | Tang Q, Wang Y, Liang J, et al. CO2+-Exchanged faujasite zeolites as efficient heterogeneous catalysts for epoxidation of styrene with molecular oxygen[J]. Chemical Communications, 2004, 10(4): 440. |
39 | Volovych I, Schwarze M, Nairoukh Z, et al. Sol-gel immobilized catalyst systems for tandem transformations with trans-stilbene as an intermediate[J]. Catalysis Communications, 2014, 53: 1-4. |
40 | Artur B, Anabela S, Elise M, et al. MoO2 nanoparticles as highly efficient olefin epoxidation catalysts[J]. Applied Catalysis A: General, 2015, 504: 399-407. |
41 | Fu Y, Xu L, Shen H, et al. Tunable catalytic properties of multi-metal-organic frameworks for aerobic styrene oxidation[J]. Chemical Engineering Journal, 2016, 299: 135-141. |
42 | Sharma A S, Shah D, Kaur H. Gold nanoparticles supported on dendrimer@resin for the efficient oxidation of styrene using elemental oxygen[J]. RSC Adv., 2015, 5(53): 42935-42941. |
43 | Jin W Q, Wang H X, Lu B, et al. SO42--Fe-V/ZrO2 composite for selective oxidation of styrene to benzaldehyde in H2O2 aqueous solution[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4411-4418. |
44 | Sun W, Hu J. Oxidation of styrene to benzaldehyde with hydrogen peroxide in the presence of catalysts obtained by the immobilization of H3PW12O40 on SBA-15 mesoporous material[J]. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119(1): 305-318. |
45 | Tong J, Cai X, Wang H, et al. Improvement of catalytic activity in selective oxidation of styrene with H2O2 over spinel Mg-Cu ferrite hollow spheres in water[J]. Materials Research Bulletin, 2014, 55(7): 205-211. |
46 | Liu X, Ding J, Lin X, et al. Zr-doped CeO2 nanorods as versatile catalyst in the epoxidation of styrene with tert-butyl hydroperoxide as the oxidant[J]. Applied Catalysis A: General, 2015, 503: 117-123. |
47 | Narayanan S, Vijaya J J, Sivasanker S, et al. Hierarchical ZSM-5 catalytic performance evaluated in the selective oxidation of styrene to benzaldehyde using TBHP[J]. Journal of Porous Materials, 2016, 23(3): 741-752. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[4] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[5] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[6] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[7] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[8] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[9] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[12] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508. |
[15] | Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2 [J]. CIESC Journal, 2023, 74(4): 1570-1577. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||