CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2889-2899.DOI: 10.11949/0438-1157.20200075
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yongsheng WANG(),Xiaolin LAN,Tian QIU,Xinping ZHANG,Yingying WU,Li CHEN,Weixiang XU,Dongjie GUO,Zhengkang DUAN()
Received:
2020-01-17
Revised:
2020-03-30
Online:
2020-06-05
Published:
2020-06-05
Contact:
Zhengkang DUAN
王永胜(),兰小林,邱天,张新平,吴莹莹,陈莉,徐伟祥,郭栋杰,段正康()
通讯作者:
段正康
作者简介:
王永胜(1995—),男,硕士研究生,基金资助:
CLC Number:
Yongsheng WANG, Xiaolin LAN, Tian QIU, Xinping ZHANG, Yingying WU, Li CHEN, Weixiang XU, Dongjie GUO, Zhengkang DUAN. Synthesis and characterization of copper-based graphene composite catalyst[J]. CIESC Journal, 2020, 71(6): 2889-2899.
王永胜, 兰小林, 邱天, 张新平, 吴莹莹, 陈莉, 徐伟祥, 郭栋杰, 段正康. 铜基石墨烯复合催化剂的合成与表征[J]. 化工学报, 2020, 71(6): 2889-2899.
Fig.3 XRD patterns of hydrothermal products after different hydrothermal times (a), precursor of hydrothermal catalyst and reduced Cu/rGO catalyst (b)
序号 | 催化剂制备条件 | 反应时间/h | 初次排气温度/℃ | IDA 收率/% |
---|---|---|---|---|
1 | Cu/rGO(无TPA) | 5.4 | 163.4 | 68.82 |
2 | 水 | 4.2 | 158.0 | 76.89 |
3 | V(乙二醇)∶V(水)=1∶1 | 3.7 | 145.5 | 82.24 |
4 | V(乙醇)∶V(水)=1∶1 | 3.1 | 129.6 | 86.55 |
5 | pH= 12.0 | 3.9 | 156.1 | 78.21 |
6 | pH= 11.0 | 4.5 | 162.3 | 70.96 |
7 | pH= 7.0 | 6.5 | 167.2 | 29.37 |
8 | 水热2 h | 5.9 | 162.1 | 35.26 |
9 | 水热6 h | 4.4 | 159.9 | 68.19 |
10 | GO | 3.0 | — | — |
Table 1 Catalytic performance of samples in dehydrogenation of diethanolamine
序号 | 催化剂制备条件 | 反应时间/h | 初次排气温度/℃ | IDA 收率/% |
---|---|---|---|---|
1 | Cu/rGO(无TPA) | 5.4 | 163.4 | 68.82 |
2 | 水 | 4.2 | 158.0 | 76.89 |
3 | V(乙二醇)∶V(水)=1∶1 | 3.7 | 145.5 | 82.24 |
4 | V(乙醇)∶V(水)=1∶1 | 3.1 | 129.6 | 86.55 |
5 | pH= 12.0 | 3.9 | 156.1 | 78.21 |
6 | pH= 11.0 | 4.5 | 162.3 | 70.96 |
7 | pH= 7.0 | 6.5 | 167.2 | 29.37 |
8 | 水热2 h | 5.9 | 162.1 | 35.26 |
9 | 水热6 h | 4.4 | 159.9 | 68.19 |
10 | GO | 3.0 | — | — |
1 | Daniel A H, Katherine M, James W R. A continuous diethanolamine dehydrogenation fixed bed catalyst and reactor system[J]. Chemical Engineering Journal, 2016, 278(15): 447-453. |
2 | Wang Y, Zhu H, Duan Z, et al. Study on the structure of Cu/ZrO2 catalyst and the formation mechanism of disodium iminodiacetate and sodium glycine[J]. Catalysis Letters, 2019, 150(4): 1111-1120. |
3 | Samson K, Sliwa M, Socha R, et al.Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2[J]. ACS Catalysis, 2016, 4(10): 3730-3741. |
4 | Zhu Y, Kong X, Li X, et al. Cu Nanoparticles inlaid mesoporous Al2O3 as a high-performance bifunctional catalyst for ethanol synthesis via dimethyl oxalate hydrogenation[J]. ACS Catalysis, 2014, 4(10): 3612-3620. |
5 | 王永胜, 赵云鹭, 赵珍珍, 等. 氮掺杂碳包覆Cu-ZrO2催化剂的制备及其催化脱氢性能研究[J]. 化学学报, 2019, 77: 661-668. |
Wang Y S, Zhao Y L, Zhao Z Z, et al. Study on preparation of Cu-ZrO2 catalyst coated by nitrogen-doped carbon and catalytic dehydrogenation performance[J]. Acta Chim. Sinica, 2019, 77: 661-668. | |
6 | Lan X, Duan Z, Wang Y, et al. Advance in synthesizing Cu-based catalysts applying to dehydrogenation process[J]. Perroleum Chemistry, 2019, 59: 609-617. |
7 | Gawande M B, Goswami A, Felpin F X, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis[J]. Chemical Reviews, 2016, 116: 3722-3811 |
8 | Wang D, Yang G, Ma Q, et al. Confinement effect of carbon nanotubes: copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate[J]. ACS Catalysis, 2012, 2: 1958-1966. |
9 | Morales M V, Nieto E A, Baeza B B, et al. Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite[J]. Carbon, 2016, 102: 426-436. |
10 | Dvaid A M, Juan P A H. Catalyst for dehydrogenating primary alcohols: US8298985[P]. 2010-10-30. |
11 | Wang L, Wang L, Meng X, et al. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts[J]. Advanced Materials, 2019, 32: 1901-1905. |
12 | 兰小林, 段正康, 王永胜, 等. 不同晶相结构ZrO2负载铜基催化剂用于二乙醇胺脱氢反应[J]. 精细化工, 2019, 36(12): 2438-2446. |
Lan X L, Duan Z K, Wang Y S, et al. ZrO2 with different crystal structure supported Cu catalysts for the dehydrogenation of diethanolamine[J]. Fine Chemicals, 2019, 36(12): 2438-2446. | |
13 | 兰小林, 段正康, 徐金霞, 等. 基于Cu基催化剂的二乙醇胺脱氢工艺研究进展[J]. 精细化工, 2019, 36(7): 1286-1293. |
Lan X L, Duan Z K, Xu J X, et al. Research advance in dehydrogenation process of diethanolamine based on Cu-based catalysts[J]. Fine Chemicals, 2019, 36(7): 1286-1293. | |
14 | Cai X, Luo Y, Liu B, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews, 2018, 47: 6224-6266. |
15 | 贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315. |
He X F, Long X Y, Wu H J, et al. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction[J]. CIESC Journal, 2019, 70(6): 2308-2315. | |
16 | Wu W, Yang Y, Zhou H, et al. Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide[J]. Water Air Soil Pollution, 2013, 224(1): 1372-1379. |
17 | Du Y, Cao N, Yang L, et al. One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. New Journal of Chemistry, 2013, 37(1): 335-342. |
18 | Ş Betül, Esma H A, Ş Aysun, et al. A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for knoevenagel condensation of aryl aldehydes together with malononitrile[J]. Applied Catalysis B: Environmental, 2018, 225: 148-153. |
19 | Zhang P, Wang Q, Li W, et al. A highly porous graphitic-N rich carbon stabilized copper nanocatalysts for efficient ethanol dehydrogenation[J]. ChemCatChem, 2017, 9: 1-7. |
20 | Wang D, Niu W, Tan M, et al. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol[J]. ChemSusChem, 2014, 7: 1398-1406. |
21 | Wang J, Qin Y, Liu X, et al. In situ synthesis of magnetically recyclable graphene-supported Pd@Co core-shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Journal of Materials Chemistry, 2012, 22(25): 12468-12470. |
22 | Pietrzak K, Strojny-Nędza A, Olesińska W, et al. Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation[J]. Applied Surface Science, 2017, 421: 228-233. |
23 | Wang Y S, Zhao Z Z, Zhao Y L, et al. A ZrO2-RGO composite as support enhanced performance for Cu-based catalyst in dehydrogenation of diethanolamine[J]. RSC Advances, 2019, 9: 30439-30447. |
24 | Moussa S, Siamaki A R, Gupton B F, et al. Pd-partially reduced graphene oxide catalysts (Pd/PRGO): laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions[J]. ACS Catalysis, 2011, 2(1): 145-154. |
25 | Huang J, Zhang L, Chen B, et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis[J]. Nanoscale, 2010, 2(12): 2733-2738. |
26 | Liu S, Zhao B, Jiang L. Core-shell Cu@rGO hybrids filled in epoxy composites with high thermal conduction[J]. Journal of Materials Chemistry C, 2017, 6(2): 257-265. |
27 | 龚水水, 光善仪, 柯福佑, 等. 红外光谱法氧化石墨烯羧基官能团含量的测定[J]. 中国测试, 2016, 42(4): 38-44. |
Gong S S, Guang S Y, Ke F Y, et al. Determination of the content of carboxyl functional groups of graphene oxide by infrared spectroscopy[J]. China Measurement & Test, 2016, 42(4): 38-44. | |
28 | Jia Z, Chen T, Wang J, et al. Synthesis characterization and tribological properties of Cu/reduced graphene oxide composites[J]. Tribology International, 2015, 88: 17-24. |
29 | Pham T A, Kim J S. One-step reduction of graphene oxide with L-glutathione[J]. Colloids and Surfaces A: Physicochemical and Engineering, 2011, 384(1): 543-548. |
30 | Gupta R K, Alahmed Z A, Yakuphanoglu F. Graphene oxide based low cost battery[J]. Materials Letters, 2013, 112(12): 75-77. |
31 | Wang Y, Zhu S, Tsubaki N, et al. Highly dispersed Mo2C anchored on N, P-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction[J]. ChemCatChem, 2018, 10(10): 2300-2304. |
32 | Kim S. Charge transfer transition accompanying X-ray photoionization in transition-metal compounds[J]. Journal of Electron Spectroscopy and Related Phenom, 1974, 3: 217-226. |
33 | Severino F, Brito J L, Laine J, et al. Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts[J]. Journal of Catalysis, 1998, 177: 82-95. |
34 | Acharyya S S, Ghosh S, Bal R. Catalytic oxidation of aniline to azoxybenzene over CuCr2O4 spinel nanoparticle catalyst[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 584-589. |
35 | Maiti S, Llorca J, Dominguez M, et al. Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): a superior catalyst for methanol steam reforming compared to its impregnated analogue[J]. Journal of Power Sources, 2016, 304: 319-331. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[6] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[11] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[14] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[15] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 512
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||