CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3819-3829.DOI: 10.11949/0438-1157.20200199
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Li HAO1,2(),Dandan HUANG1,Mei GUAN1,Hongjun ZHOU1,2,Xinhua ZHOU1,2()
Received:
2020-02-28
Revised:
2020-06-01
Online:
2020-08-05
Published:
2020-08-05
Contact:
Xinhua ZHOU
郝丽1,2(),黄丹丹1,关梅1,周红军1,2,周新华1,2()
通讯作者:
周新华
作者简介:
郝丽(1988—),女,博士,讲师,基金资助:
CLC Number:
Li HAO, Dandan HUANG, Mei GUAN, Hongjun ZHOU, Xinhua ZHOU. Preparation of supramolecular-assemble hydrogels as pesticide carriers based on amphiphilic amino-amide compounds[J]. CIESC Journal, 2020, 71(8): 3819-3829.
郝丽, 黄丹丹, 关梅, 周红军, 周新华. 氨基-酰胺类智能超分子水凝胶农药载体制备[J]. 化工学报, 2020, 71(8): 3819-3829.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Synthesis routes: stearic acid and DMPDA condensation to form amino-amide(a); amino-amide and citric acid assemble to form temperature-responsive supramolecule(b); amino-amide and maleic acid to form pH-responsive supramolecule(c)
Fig.2 Amino-amide/citric acid temperature-responsive supramolecular hydrogel sol-gel transition (a); amino-amide/maleic acid pH-responsive supramolecular hydrogel sol-gel transition(b)
Fig.7 SEM images of amino-amide/citric acid supramolecular lyophilized gel (a), amino-amide/maleic acid supramolecular lyophilized gel (b); particle size distribution of amino-amide/citric acid and amino-amide/maleic acid sol micelles (c); micelle size distribution of amino-amide/citric acid and amino-amide/maleic acid loaded with avermectin (d)
Fig.8 SEM images of amino-amide/citric acid supramolecular lyophilized gel (a) and amino-amide/maleic acid supramolecular lyophilized gel (b) after avermectin loading
Sample | Encapsulation efficiency (EE)/% | EE after placing three days/% |
---|---|---|
AVM@amino-amide/citric acid | 89.12±4.72 | 88.27±5.11 |
AVM@amino-amide/maleic acid | 82.39±2.52 | 64.80±4.23 |
Table 1 Encapsulation efficiency and stability of avermectin by amino-amide/citric acid and amino-amide/maleic acid supramolecules
Sample | Encapsulation efficiency (EE)/% | EE after placing three days/% |
---|---|---|
AVM@amino-amide/citric acid | 89.12±4.72 | 88.27±5.11 |
AVM@amino-amide/maleic acid | 82.39±2.52 | 64.80±4.23 |
Fig.9 Sustained-release curves of avermectin loaded amino-amide/citric acid supramoleculars (a) and avermectin loaded amino-amide/maleic acid supramolecular (b) under different temperatures and pH environments
1 | Zuo Y, Jiao Z, Ma L, et al. Hydrogen bonding induced UCST phase transition of poly(ionic liquid)-based nanogels[J]. Polymer, 2016, 98: 287-293. |
2 | Shankar B V, Patnaik A. A new pH and thermo-responsive chiral hydrogel for stimulated release[J]. Journal of Physical Chemistry B, 2007, 111(31): 9294-9300. |
3 | Cunningham V J, Ratcliffe L P D, Blanazs A, et al. Tuning the critical gelation temperature of thermo-responsive diblock copolymer worm gels[J]. Polymer Chemistry, 2014, 5(21): 6307-6317. |
4 | Xiao Y Y, Gong X L, Kang Y, et al. Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect[J]. Chemical Communications, 2016, 52(70): 10609-10612. |
5 | Kang Y, Ju X, Ding L S, et al. Reactive oxygen species and glutathione dual redox-responsive supramolecular assemblies with controllable release capability[J]. ACS Applied Matererials & Interfaces, 2017, 9(5): 4475-4484. |
6 | Cheng X, Jin Y, Sun T, et al. An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2016, 141: 44-52. |
7 | Roy D, Cambre J N, Sumerlin B S. Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science, 2010, 35(1/2): 278-301. |
8 | Stuart M A, Huck W T, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010, 9(2): 101-113. |
9 | Song F, Zhang L M, Shi J F, et al. Using hydrophilic polysaccharide to modify supramolecular hydrogel from a low-molecular-mass gelator[J]. Materials Science and Engineering: C, 2010, 30(6): 804-811. |
10 | Shen Y T, Li C H, Chang K C, et al. Synthesis, optical, and mesomorphic properties of self-assembled organogels featuring phenylethynyl framework with elaborated long-chain pyridine-2,6-dicarboxamides[J]. Langmuir, 2009, 25(15): 8714-8722. |
11 | Steed J W. Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry[J]. Chemical Society Reviews, 2010, 39(10): 3686-3699. |
12 | Tomasini C, Castellucci N. Peptides and peptidomimetics that behave as low molecular weight gelators[J]. Chemical Society Reviews, 2013, 42(1): 156-172. |
13 | Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications[J]. Acta Biomaterialia, 2014, 10(4): 1671-1682. |
14 | Tang G, Chen S, Ye F, et al. Loofah-like gel network formed by the self-assembly of a 3D radially symmetrical organic-inorganic hybrid gelator[J]. Chemical Communications, 2014, 50(54): 7180-7183. |
15 | Cordier P, Tournilhac F, Soulie-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008, 451(7181): 977-980. |
16 | Aida T, Meijer E W, Stupp S I. Functional supramolecular polymers[J]. Science, 2012, 335(6070): 813-817. |
17 | Yan X, Wang F, Zheng B, et al. Stimuli-responsive supramolecular polymeric materials[J]. Chemical Society Reviews, 2012, 41(18): 6042-6065. |
18 | Yan X, Xu D, Chen J, et al. A self-healing supramolecular polymer gel with stimuli-responsiveness constructed by crown ether based molecular recognition[J]. Polymer Chemistry, 2013, 4(11): 3312-3322. |
19 | 沈之川, 梁志铿, 周红军, 等. pH响应性阿维菌素/介孔硅的一步合成与释药性能[J]. 精细化工, 2018, 35(7): 1126-1130. |
Shen Z C, Liang Z K, Zhou H J, et al. One-step synthesis and drug release of pH-responsive avermectin/mesoporous silica[J]. Fine Chemicals, 2018, 35(7): 1126-1130. | |
20 | 陈铧耀, 周新华, 周红军, 等. 毒死蜱/壳聚糖改性凹凸棒土/海藻酸钠微球的制备与缓释性能[J]. 化工进展, 2017, 36(3): 1033-1040. |
Chen H Y, Zhou X H, Zhou H J, et al. Preparation and slow-release performance of chlorpyrifos/chitosan modified attapulgite/sodium alginate microspheres[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1033-1040. | |
21 | 陈龙, 周红军, 江海科, 等. 叶面亲和型阿维菌素微胶囊的制备及 pH 响应性释放性能[J]. 化工进展, 2020, 39(1): 348-355. |
Chen L, Zhou H J, Jiang H K, et al. Preparation and pH responsive release properties of foliar affinity avermectin microcapsules[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 348-355. | |
22 | 邱松发, 许斌华, 林冠权, 等. 2, 4-D/CMC接枝物纳米粒子的制备与缓释性能研究[J]. 化工学报, 2019, 70(5): 2007-2015. |
Qiu S F, Xu B H, Lin G Q, et al. Preparation and sustained release performance of 2,4-D/grafted CMC nanoparticles [J]. CIESC Journal, 2019, 70(5): 2007-2015. | |
23 | Wang S, Vajjala K S, Gomez E D, et al. Sustainable thermoplastic elastomers derived from fatty acids[J]. Macromolecules, 2013, 46(18): 7202-7212. |
24 | Holmberg A L, Reno K H, Wool R P, et al. Biobased building blocks for the rational design of renewable block polymers[J]. Soft Matter, 2014, 10(38): 7405-7424. |
25 | Vendamme R, Schüwer N, Evers W. Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhensives derived from renewable building blocks[J]. Journal of Applied Polymer Science, 2014, 131(17): 40669. |
26 | Chen I C, Yegin C, Zhang M, et al. Use of pH-responsive amphiphilic systems as displacement fluids in enhanced oil recovery[J]. SPE Journal, 2014, 19(6): 1035-1046. |
27 | Hao L, Yegin C, Talari J V, et al. Thermo-responsive gels based on supramolecular assembly of an amidoamine and citric acid[J]. Soft Matter, 2018, 14: 432. |
28 | Dougherty R C. Temperature and pressure dependence of hydrogen bond strength: a perturbation molecular orbital approach[J]. The Journal of Chemical Physics, 1998, 109(17): 7372-7378. |
29 | Dougherty R C, Howard L N. Equilibrium structural model of liquid water: evidence from heat capacity, spectra, density, and other properties[J]. The Journal of Chemical Physics, 1998, 109(17): 7379-7393. |
30 | 宋伟杰, 路福绥. 阿维菌素光化学降解研究及其光稳定剂的筛选[J]. 现代农药, 2017, 16(2): 21-23. |
Song W J, Lu F S. Photodegradation of abamectin and screening the photostabilizers[J]. Modern Agrochemicals, 2017, 16(2): 21-23. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[4] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[5] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[6] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[7] | Shiting XIE, Zhuang LIU, Rui XIE, Xiaojie JU, Wei WANG, Dawei PAN, Liangyin CHU. Study on preparation of poly(N-isopropylacrylamide-co-allylthiourea) smart microgels and responsive performance of Hg2+ [J]. CIESC Journal, 2023, 74(6): 2689-2698. |
[8] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[9] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[10] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[11] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[12] | Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics [J]. CIESC Journal, 2022, 73(9): 4003-4014. |
[13] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
[14] | Duanhui GAO, Weiqiang XIAO, Feng GAO, Qian XIA, Manqiu WANG, Xinbo LU, Xiaoli ZHAN, Qinghua ZHANG. Preparation and application of polyimide-based aerogels [J]. CIESC Journal, 2022, 73(7): 2757-2773. |
[15] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||