CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3830-3838.DOI: 10.11949/0438-1157.20191568
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Ling DI(),Fang CHEN,Rongrong FU,Chen YANG,Yang XING(),Xiaoning WANG
Received:
2019-12-23
Revised:
2020-04-29
Online:
2020-08-05
Published:
2020-08-05
Contact:
Yang XING
通讯作者:
邢杨
作者简介:
狄玲(1984—),女,博士,讲师,基金资助:
CLC Number:
Ling DI, Fang CHEN, Rongrong FU, Chen YANG, Yang XING, Xiaoning WANG. Mechanism research of organic pesticides detection by rich electronic LMOF[J]. CIESC Journal, 2020, 71(8): 3830-3838.
狄玲, 陈放, 付荣荣, 杨辰, 邢杨, 王晓宁. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830-3838.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Structure of organic ligand(a); SEM image of LMOF-a(b); the coordination environments of binuclear Zn(Ⅱ) center(c) and the organic ligand(d) in LMOF-a; topological structure of LMOF-a(e)
Fig.3 Structures of organic pesticides GPHS, CPR, TZP, CTL, NF, TFL and DCN(a); fluorescent responses of LMOF-a to seven organic pesticides with addition concentration of 2.0, 6.0 and 10.0 mmol/L(b)
Pesticides | KSV/(L/mmol) | Standard | f1 | f2 | r2 |
---|---|---|---|---|---|
CTL | 0.322 | 0.035 | 0.845 | 0.155 | 0.993 |
NF | 0.335 | 0.015 | 1.049 | -0.049 | 0.998 |
TFL | 3.025 | 0.156 | 1.133 | -0.133 | 0.997 |
DCN | 4.778 | 0.590 | 1.181 | -0.181 | 0.991 |
Table 1 Fitting parameters for organic pesticides detection by LMOF-a
Pesticides | KSV/(L/mmol) | Standard | f1 | f2 | r2 |
---|---|---|---|---|---|
CTL | 0.322 | 0.035 | 0.845 | 0.155 | 0.993 |
NF | 0.335 | 0.015 | 1.049 | -0.049 | 0.998 |
TFL | 3.025 | 0.156 | 1.133 | -0.133 | 0.997 |
DCN | 4.778 | 0.590 | 1.181 | -0.181 | 0.991 |
1 | Kim K H, Kabir E, Jahan S A. Exposure to pesticides and the associated human health effects[J]. Science of the Total Environment, 2017, 575: 525-535. |
2 | Chen J, Huang Y, Kannan P, et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables[J]. Analytical Chemistry, 2016, 88(4): 2149-2155. |
3 | Andreu V, Picó Y. Determination of currently used pesticides in biota[J]. Analytical and Bioanalytical Chemistry, 2012, 404(9): 2659-2681. |
4 | Inglezakis V J, Moustakas K. Household hazardous waste management: a review[J]. Journal of Environmental Management, 2015, 150: 310-321. |
5 | Koureas M, Tsakalof A, Tsatsakis A, et al. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes[J]. Toxicology Letters, 2012, 210(2): 155-168. |
6 | Odukkathil G, Vasudevan N. Toxicity and bioremediation of pesticides in agricultural soil[J]. Reviews in Environmental Science and Bio/Technology, 2013, 12(4): 421-444. |
7 | Rodrigo M, Oturan N, Oturan M A. Electrochemically assisted remediation of pesticides in soils and water: a review[J]. Chemical Reviews, 2014, 114(17): 8720-8745. |
8 | Handford C E, Elliott C T, Campbell K. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards[J]. Integrated Environmental Assessment and Management, 2015, 11(4): 525-536. |
9 | Pateiro-Moure M, Arias-EstéVez M, Simal-GáNdara J S. Critical review on the environmental fate of quaternary ammonium herbicides in soils devoted to vineyards[J]. Environmental Science & Technology, 2013, 47(10): 4984-4998. |
10 | Bruzzoniti M C, Checchini L, de Carlo R M, et al. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: a critical review[J]. Analytical and Bioanalytical Chemistry, 2014, 406(17): 4089-4116. |
11 | Rojano-Delgado A M, Luque de Castro M D. Capillary electrophoresis and herbicide analysis: present and future perspectives[J]. Electrophoresis, 2014, 35(17): 2509-2519. |
12 | Elbashir A A, Aboul-Enein H Y. Separation and analysis of triazine herbcide residues by capillary electrophoresis[J]. Biomedical Chromatography, 2015, 29(6): 835-842. |
13 | Singha D K, Majee P, Mondal S K, et al. Highly selective aqueous phase detection of azinphos-methyl pesticide in ppb level using a cage-connected 3D MOF[J]. ChemistrySelect, 2017, 2(20): 5760-5768. |
14 | Vikrant K, Tsang D C W, Raza N, et al. Potential utility of metal-organic framework-based platform for sensing pesticides[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8797-8817. |
15 | Yi F Y, Chen D, Wu M K, et al. Chemical sensors based on metal-organic frameworks[J]. ChemPlusChem, 2016, 81(8): 675-690. |
16 | Zhao M, Huang Y, Peng Y, et al. Two-dimensional metal-organic framework nanosheets: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(16): 6267-6295. |
17 | Jayaramulu K, Kanoo P, George S J, et al. Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand[J]. Chemical Communications, 2010, 46(42): 7906-7908. |
18 | Zhang C, Che Y, Zhang Z, et al. Fluorescent nanoscale zinc (Ⅱ)-carboxylate coordination polymers for explosive sensing[J]. Chemical Communications, 2011, 47(8): 2336-2338. |
19 | Wang R, Dong X Y, Xu H, et al. A super water-stable europium-organic framework: guests inducing low-humidity proton conduction and sensing of metal ions[J]. Chemical Communications, 2014, 50(65): 9153-9156. |
20 | Kumar P, Paul A K, Deep A. A luminescent nanocrystal metal organic framework for chemosensing of nitro group containing organophosphate pesticides[J]. Analytical Methods, 2014, 6(12): 4095-4101. |
21 | Deep A, Bhardwaj S K, Paul A K, et al. Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion[J]. Biosensors and Bioelectronics, 2015, 65: 226-231. |
22 | Bhardwaj S K, Bhardwaj N, Mohanta G C, et al. Immunosensing of atrazine with antibody-functionalized Cu-MOF conducting thin films[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26124-26130. |
23 | Wang J, He C, Wu P, et al. An amide-containing metal-organic tetrahedron responding to a spin-trapping reaction in a fluorescent enhancement manner for biological imaging of NO in living cells[J]. Journal of the American Chemical Society, 2011, 133(32): 12402-12405. |
24 | Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840. |
25 | Kumar P, Paul A K, Deep A. Sensitive chemosensing of nitro group containing organophosphate pesticides with MOF-5[J]. Microporous and Mesoporous Materials, 2014, 195: 60-66. |
26 | Ghosh P, Saha S K, Roychowdhury A, et al. Recognition of an explosive and mutagenic water pollutant, 2,4,6-trinitrophenol, by cost-effective luminescent MOFs[J]. European Journal of Inorganic Chemistry, 2015, 2015(17): 2851-2857. |
27 | Helal A, Qamaruddin M, Aziz M A, et al. MB-UiO-66-NH2 metal-organic framework as chromogenic and fluorogenic sensor for hydrazine hydrate in aqueous solution[J]. ChemistrySelect, 2017, 2(25): 7630-7636. |
28 | Jin D, Gong A, Zhou H. Visible-light-activated photoelectrochemical biosensor for the detection of the pesticide acetochlor in vegetables and fruit based on its inhibition of glucose oxidase[J]. RSC Advances, 2017, 7(28): 17489-17496. |
29 | Smith J V. Topochemistry of zeolites and related materials[J]. Chemical Reviews, 1988, 88(1): 149-182. |
30 | Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time[J]. Chemical Reviews, 2003, 103(3): 663-701. |
31 | Farahani Y D, Safarifard V. Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn-MOF with azine-decorated pores[J]. Journal of Solid State Chemistry, 2019, 275: 131-140. |
32 | Jensen S, Tan K, Lustig W, et al. Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules[J]. Journal of Materials Chemistry C, 2019, 7(9): 2625-2632. |
33 | Di L, Zhang J J, Liu S Q, et al. Two dynamic abw-type metal organic frameworks built of pentacarboxylate and Zn2+ as photoluminescent probes of nitroaromatics[J]. Crystal Growth & Design, 2016, 16(8): 4539-4546. |
34 | Zhao G J, Han K L. Hydrogen bonding in the electronic excited state[J]. Accounts of Chemical Research, 2012, 45(3): 404-413. |
35 | Singha D K, Majee P, Mandal S, et al. Detection of pesticides in aqueous medium and in fruit extracts using a three-dimensional metal-organic framework: experimental and computational study[J]. Inorganic Chemistry, 2018, 57(19): 12155-12165. |
36 | Nagarkar S S, Joarder B, Chaudhari A K, et al. Highly selective detection of nitro explosives by a luminescent metal-organic framework[J]. Angewandte Chemie International Edition, 2013, 52(10): 2881-2885. |
37 | Dai Y, Zhou H, Song X D, et al. Two (5,5)-connected isomeric frameworks as highly selective and sensitive photoluminescent probes of nitroaromatics[J]. CrystEngComm, 2017, 19(20): 2786-2794. |
38 | Xing Y, Qiao C, Li X, et al. The dependence of oxygen sensitivity on molecular structures of Ir(Ⅲ) complexes and application for photostable and reversible luminescent oxygen sensing[J]. RSC Advances, 2019, 9(27): 15370-15380. |
39 | Wang X D, Wolfbeis O S. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications[J]. Chemical Society Reviews, 2014, 43(10): 3666-3761. |
[1] | Guojun XI, Zihan LIU, Guangping LEI. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC [J]. CIESC Journal, 2022, 73(9): 3940-3949. |
[2] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[3] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
[4] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[5] | Jihao ZHAO, Weiqiang TANG, Xiaofei XU, Shuangliang ZHAO, Jionghao HE. Adsorption energy of bonding agent on nano-filler in polymer composites [J]. CIESC Journal, 2022, 73(7): 3174-3181. |
[6] | Yi WANG, Qizhao XIONG, Yang CHEN, Jiangfeng YANG, Libo LI, Jinping LI. Research on Zr-based metal-organic frameworks for NH3 adsorption [J]. CIESC Journal, 2022, 73(4): 1772-1780. |
[7] | Heng MAO, Yue WANG, Sen WANG, Weimin LIU, Jing LYU, Fuxue CHEN, Zhiping ZHAO. APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation [J]. CIESC Journal, 2022, 73(3): 1389-1402. |
[8] | Sa WANG, Yijing WEN, Danyu GUO, Xin ZHOU, Zhong LI. Tuning secondary building unit of zirconium-based MOF for enhanced separation of light hydrocarbons [J]. CIESC Journal, 2022, 73(2): 730-738. |
[9] | Xiaokun HE, Yuan XUE, Ran ZUO. Quantum chemistry study on gas reaction path in InN MOCVD growth [J]. CIESC Journal, 2022, 73(12): 5638-5647. |
[10] | Xiaosong LUO, Jinbao HUANG, Mei ZHOU, Xin MU, Weiwei XU, Lei WU. Theoretical study on the mechanism of hydrolysis/alcoholysis/ammonolysis of butanediol terephthalate dimer [J]. CIESC Journal, 2022, 73(11): 4859-4871. |
[11] | Houhu ZHANG, Xiaoli WU, Chongchong CHEN, Jingjing CHEN, Jingtao WANG. Preparation of 2D lamellar CD-MOF membranes for accurate separation of mixed solvents [J]. CIESC Journal, 2022, 73(10): 4539-4550. |
[12] | Xianhui ZHU, Fu WANG, Jiecheng XIA, Jinliang YUAN. Density functional theory investigation on the NH3 and CO2 absorption by functional ionic liquids [J]. CIESC Journal, 2022, 73(10): 4324-4334. |
[13] | Xiang GONG, Linsen LI, Zhao JIANG. Employing PdCo/SiO2 catalyst in high activity dehydrogenation reaction of heterocyclic H2 storage carrier [J]. CIESC Journal, 2022, 73(10): 4448-4460. |
[14] | LIU Zengxin,WANG Yijun,HAO Chunlian,LIU Xiuping. Metal-organic frameworks: metathesis of zinc(Ⅱ) with copper(Ⅱ) for efficient CO2/CH4 separation [J]. CIESC Journal, 2021, 72(S1): 546-553. |
[15] | Chenxu GENG, Yuxiu SUN, Hongliang HUANG, Xiangyu GUO, Zhihua QIAO, Chongli ZHONG. Mechanochemically synthesized small sized MOF fillers assisted for highly efficient CO2 separation [J]. CIESC Journal, 2021, 72(9): 4750-4758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||